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Preface

The idea that self-organisation and emergence can be harnessed for the purpose
of solving tricky engineering problems is becoming increasingly accepted. Re-
searchers working in many diverse fields (such as networks, distributed systems,
operating systems and agent systems) are beginning to apply this new approach.
This book contains recent work from a broad range of areas with the common
theme of utilising self-organisation productively.

As distributed information infrastructures continue to spread (such as the
Internet, wireless and mobile systems), new challenges have arisen demanding
robust and scalable solutions. In these new challenging environments the de-
signers and engineers of global applications and services can seldom rely on
centralised control or management, high reliability of devices, or secure envi-
ronments. At the other end of the scale, ad-hoc sensor networks and ubiquitous
computing devices are making it possible to embed millions of smart computing
agents into the local environment. Here too systems need to adapt to constant
failures and replacement of agents and changes in the environment, without
human intervention or centralised management.

Self-organising applications (SOAs) are able to dynamically change their
functionality and structure without direct user intervention to meet changes
in requirements and their environment. The overall functionality delivered by
SOAs typically changes progressively, mainly in a non-linear fashion, until it
reaches (emerges to) a state where it satisfies the current system requirements
and therefore it is termed self-organising or emergent behaviour. Self-organising
behaviour is often the result of the execution of a number of individual appli-
cation components that locally interact with each other aiming to achieve their
local goals, for example, systems that are based on agents or distributed ob-
jects. The main characteristic of such systems is their ability to achieve complex
collective tasks with relatively simple individual behaviours, without central or
hierarchical control.

However, in artificial systems, environmental pressures and local interactions
and control may lead to unpredicted or undesirable behaviour. A major open
issue is therefore how to engineer desirable emergent behaviour in SOAs and how
to avoid undesirable ones given the requirements and the application environ-
ment. To address this issue, approaches originating from diverse areas such as
non-linear optimisation, knowledge-based programming and constraint problem
solving are currently been explored. Furthermore, SOA engineers often take in-
spiration from the real world, for example from biology, chemistry, sociology and
the physical world. Typical examples of SOAs are systems that reproduce so-
cially based insect behaviour, such as ants-based systems, artificial life, or robots.
Although the results achieved so far are promising, further work is required until
the problem is sufficiently addressed.
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More specific fundamental questions that need an answer are: How do we
structure the application components and their interactions, so that the self-
organisation process results in the desired functionality? How do we validate
that the application performs to the requirements within the range of scenarios
expected during deployment? What means of influencing the dynamics of the
application do we have available and how effective are they? On the one hand,
multi-agent simulations and analytic modelling can be used to study emergent
behaviour in real systems. On the other hand, results from complexity theory
can be applied in engineering of both multi-agent systems and self-organising
systems.

To address these issues the ESOA series of workshops was established. The
aim is to open a dialog among practitioners from diverse fields, including: agent-
based systems, software engineering, information systems, distributed systems,
complex systems, optimisation theory and non-linear systems, neural networks,
and evolutionary computation. Although backgrounds are diverse, the focus is
always clear – to harness self-organising principles to solve difficult engineering
problems.

This book includes revised and extended papers presented at the Third ESOA
workshop held during the 4th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS) conference held in Utrecht, The
Netherlands in July 2005. The workshop received 25 submissions, out of which 12
papers were selected for a long presentation and 6 papers for short presentation.

The first workshop (ESOA 2003) followed a theme of applying nature-inspired
models to fields as diverse as network security, manufacturing control, and elec-
tronic markets. The second workshop (ESOA 2004) included papers on self-
assembly of software, robots task allocations, design methods, and stigmergy-
based applications. Both workshops were held during the AAMAS conferences
in 2003 and 2004 respectively and post-proceedings are published by Springer,
(volumes LNAI 2977 and 3464).

ESOA 2005 included a number of papers related to methodologies and engi-
neering practices. This shows that research in the field of self-organising appli-
cations is maturing from novel techniques that work in specific contexts to more
general engineering proposals. This book is structured into three parts reflecting
the workshop session themes.

Part I presents novel self-organising mechanisms. Jelasity et al.
present a self-organising mechanism for maintaining and controlling topology
in overlay networks based on gossiping. Georgé et al. describe “emergent pro-
gramming” through self-organisation of a program’s instructions. Picard et al.
show how cooperation among agents serves as a self-organisation mechanism in
the framework of a distributed timetabling problem. Nowostaswski et al. present
the concept of “evolvable virtual machines” architecture for independent pro-
grams to evolve into higher levels of hierarchical complexity; Hales presents a
P2P re-wiring protocol that allows peers with different skills to spontaneously
self-organise into cooperative groups. Dimuro et al. present a self-regulation algo-
rithm for multi-agent systems based on a sociological model of social exchanges.
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Armetta et al. discuss a protocol for sharing critical resources based on a two-
level self-organised coordination schema.

In Part II methodologies, models and tools for self-organising ap-
plications are presented. Brueckner et al. present an agent-based graph
colouring model favouring distributed coordination among agents with limited
resources in a real-world environment. Marrow et al. describe applications us-
ing self-organisation based upon the DIET multi-agent platform. Saenchai et
al. present a multi-agent-based algorithm solving the dynamic distributed con-
straint satisfaction problem. De Wolf et al. present an approach combining sim-
ulation and numerical analysis for engineering self-organising systems with some
guaranteed macroscopic behaviour. Gardelli et al. discuss self-organising security
mechanisms based on the human immune system, and their verification through
simulation. Renz et al. discuss the need of using mesoscopic modeling to provide
descriptions of emergent behaviour.

Part III presents specific applications of self-organising mecha-
nisms. Ando et al. apply the stigmergy paradigm to automated road traffic
management. Fabregas et al. discuss a model inspired from bee behaviour and
apply this model to an example of cultural heritage. Van Parunak et al. discuss
a sift and sort algorithm for information processing inspired by ants sorting and
foraging. Tatara et al. present an agent-based adaptive control approach where
local control objectives can be changed in order to obtain global control objec-
tives. Hadeli et al. discuss measures of reactivity of agents in a multi-agent and
control approach based on stigmergy.

Finally, we wish to thank all members of the Programme Committee for
returning their reviews on time (all papers submitted to the workshop were
reviewed by two to three members of the Programme Committee) and for offering
useful suggestions on improving the workshop event. Also we thank all those who
attended the workshop and contributed to the lively discussions and question
and answer sessions.

January 2006 Sven Brueckner
Giovanna Di Marzo Serugendo

David Hales
Franco Zambonelli

Organising Committee
ESOA 2005
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T-Man: Gossip-Based Overlay
Topology Management�

Márk Jelasity�� and Ozalp Babaoglu

University of Bologna,
Dipartimento di Scienze dell’Informazione,

Mura Anteo Zamboni 7, 40126 Bologna, Italy
{jelasity, babaoglu}@cs.unibo.it

Abstract. Overlay topology plays an important role in P2P systems.
Topology serves as a basis for achieving functions such as routing, search-
ing and information dissemination, and it has a major impact on their ef-
ficiency, cost and robustness. Furthermore, the solution to problems such
as sorting and clustering of nodes can also be interpreted as a topology.
In this paper we propose a generic protocol, T-Man, for constructing
and maintaining a large class of topologies. In the proposed framework,
a topology is defined with the help of a ranking function. The nodes par-
ticipating in the protocol can use this ranking function to order any set
of other nodes according to preference for choosing them as a neighbor.
This simple abstraction makes it possible to control the self-organization
process of topologies in a straightforward, intuitive and flexible manner.
At the same time, the T-Man protocol involves only local communication
to increase the quality of the current set of neighbors of each node. We
show that this bottom-up approach results in fast convergence and high
robustness in dynamic environments. The protocol can be applied as a
standalone solution as well as a component for recovery or bootstrapping
of other protocols.

1 Introduction

In large, dynamic, fully distributed systems, such as peer-to-peer (P2P) net-
works, nodes (peers) must be organized in a connected network to be able to
communicate with each other and to implement functions and services. The
neighbors of the nodes—the “who is connected to whom”, or “who knows whom”
relation—define the overlay topology of the distributed system in question. This
topology can dynamically change in time, and in every time point, it defines the
possible interactions between the nodes.

Although it would be desirable, it is typically very difficult to ensure that all
nodes are aware of every other participating node in the system. The reason is
� This work was partially supported by the Future and Emerging Technologies unit

of the European Commission through Project BISON (IST-2001-38923) and DELIS
(IST-2002-001907).

�� Also with MTA RGAI, SZTE, Szeged, Hungary.

S.A. Brueckner et al. (Eds.): ESOA 2005, LNAI 3910, pp. 1–15, 2006.
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that the set of participating nodes changes quickly, and (due to the large number
of nodes) it is not feasible to maintain a complete list of the nodes. This means
that all nodes are aware of only a limited subset of other nodes, so efficient and
robust algorithms are necessary to create, maintain and optimize the topology.

Overlay topology forms the basis for, or has a major impact on many functions.
It is well known that functions such as searching, routing, information dissemina-
tion, data aggregation, etc, need special topologies for good performance and high
efficiency. Furthermore, solutions to other problems including sorting and cluster-
ing can be readily expressed as topologies. For example, in the case of sorting, we
are looking for a linear structure that represents some total ordering relation. For
all these functions, numerous topologies have been suggested and even more pro-
tocols to construct and repair them have been proposed.

Motivated by these observations, we consider topology management as a gen-
eral purpose function that is desirable in distributed systems. In this paper we
specifically target very large scale and highly dynamic systems. Key requirements
of topology management in such environments include robustness, scalability,
flexibility and simplicity. Besides, it is a great advantage if a topology manager
is flexible enough to allow for changing the managed topology at run time on de-
mand, without having to develop a new protocol for each possible topology from
scratch. Since topology is a very general abstraction, that can be used to express
solutions to problems and to enhance and support other functions, such func-
tionality would allow us to increase the efficiency of deploying fully distributed
application dramatically. We would need only one running topology component
and the application area of the system could be changed at run time whenever
necessary. With a protocol that supports quickly changing topologies, it even
becomes possible to automatically evolve topologies through, for example, an
evolutionary process.

In this paper we propose a generic protocol, T-Man, with the aim of fulfilling
the requirements outlined above. The desired topology is described using a single
ranking function that all nodes can apply to order any subset of potential neigh-
bors according to preference for actually being selected as a neighbor. Using only
local gossip messages, T-Man gradually evolves the current topology towards the
desired target structure with the help of the ranking function. We show experi-
mentally that the protocol is scalable and fast, with convergence times that grow
only as the logarithm of the network size. These properties allow T-Man to be
practical even when several different topologies have to be created on demand,
and also in dynamic systems where the set of nodes or their properties change
rapidly. Additionally, the general formulation of the ranking function allows us
to deal with a wide range of different topologies.

Although this work is concerned mainly with exploring the basic properties ofT-
Manby examining simple topologies like ring,mesh andbinary tree, it is possible to
illustrate its practicality with more realistic applications. We briefly outline three
such applications: sorting, clustering and a distributed hash table (DHT).

Related work includes gossip-based protocols, that have gained notable pop-
ularity in various contexts [1, 2, 14]. In this paper we suggest a novel application
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of the gossip communication model to solve the topology management problem.
Issues related to topology management itself have also received considerable at-
tention. Examples from the vast literature include DHTs [7, 11, 13], unstructured
overlays [9,3], and superpeer topologies [16]. As for topology construction, Mas-
soulié and Kermarrec [6] propose a protocol to evolve a topology that reflects
proximity, Voulgaris and van Steen [15] propose a method to jump-start Pastry.
Unlike these specific solutions, T-Man is a generic framework and can be used
to construct and maintain a large class of different topologies quickly in a simple
and scalable manner.

2 The Problem

We assume that we are given a (perhaps random) overlay network, and we
are interested in constructing some desirable topology by connecting all nodes
in the network to the right neighbors. The topology can be defined in many
different ways and it will typically depend on some properties of the nodes like
geographical location, semantic description of stored content, storage capacity,
etc. We need a formal framework that is simple yet powerful enough to be able to
capture most of the interesting structures. Our proposal is the ranking function
that defines the target topology through allowing all nodes to sort any subset
of nodes (potential neighbors) according to preference to be selected as their
neighbor.

For a more formal definition, let us first define some basic concepts. We con-
sider a set of nodes connected through a routed network. Each node has an
address that is necessary and sufficient for sending it a message. Nodes maintain
addresses of other nodes through partial views (views for short), which are sets
of c node descriptors. In addition to an address, a node descriptor contains a
profile, which contains those properties of the nodes that are relevant for defin-
ing the topology, such as ID, geographical location, etc. The addresses contained
in views at nodes define the links of the overlay network topology, or simply the
topology. Note that parameter c defines the node degree of the overlay network
and is uniform for all nodes.

We can now define the topology construction problem. The input of the prob-
lem is a set of N nodes, the view size c and a ranking function R that can
order a list of nodes according to preference from a given node. The ranking
function R takes as parameters a base node x and a set of nodes {y1, . . . , ym}
and outputs a set of orderings of these m nodes. The task is to construct the
views of the nodes such that the view of node x, denoted viewx, contains ex-
actly the first c elements of a “good” ranking of the entire node set, that is,
R(x, {all nodes except x}) contains a ranking that starts with the elements of
viewx. We will call this topology the target topology.

In the presence of churn (ie, when nodes constantly join and leave the overlay
network) we talk about maintenance of the target topology instead of construc-
tion. Instead of a formal definition, we define the problem as staying “as close
as possible” to the target topology. The actual figures of merit to characterize
maintenance can be largely application dependent in this case.
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One (but not the only) way of obtaining ranking functions is through a dis-
tance function that defines a metric space over the set of nodes. The ranking
function can simply order the given set according to increasing distance from
the base node. Let us define some example distance-based topologies of different
characteristics. From now on, to simplify our language and notation, we use the
nodes and their profiles interchangeably.

Line and ring. The profile of a node is a real number. The distance function
for the line is d(a, b) = |a − b|. In the case of a ring, profiles are from an
interval [0, N ] and distance is defined by d(a, b) = min(N − |a − b|, |a − b|)
Ranking is defined through this distance function as described above.

Mesh, tube and torus. The 1-dimensional topology defined above can be eas-
ily generalized to arbitrary dimensions to get for example a mesh or a torus.
The profiles are two-dimensional real vectors. The distance for the mesh is
the Manhattan distance. It is given by calculating the 1-dimensional dis-
tance described above along the two coordinates and returning the sum of
these distances. Applying the periodic boundary condition (as for the ring)
results in a tube for one coordinate and a three dimensional torus for both
coordinates.

Binary tree. A low diameter topology can be constructed from a binary tree:
the profiles are binary strings of length m, excluding the all zero string.
Distance is defined as the shortest path length between the two nodes in the
following undirected rooted binary tree. The string 0 . . . 01 is the root. Any
string 0a2 . . . am has two children a2 . . . am0 and a2 . . . am1. Strings starting
with 1 are leafs. This topology is of interest because (unlike the previous
ones) it has a very short (logarithmic) diameter of 2m.

There are very important ranking functions that cannot be defined by a global
distance function, therefore the ranking function is a more general concept than
distance. The ranking functions that define sorting or proximity topologies be-
long to this category. Examples will be given in Section 6.1.

3 The Proposed Solution

The topology construction problem becomes interesting when c is small and the
number of nodes is very large. Randomized, gossip-based approaches in simi-
lar settings, but for other problem domains like information dissemination or
data aggregation, have proven to be successful [2, 4]. Our solution to topology
construction is also based on a gossip communication scheme.

3.1 The Protocol

Each node executes the same protocol shown in Figure 1. The protocol consists
of two threads: an active thread initiating communication with other nodes, and
a passive thread waiting for incoming messages.

Each nodes maintains a view. The view is a set of node descriptors. A call to
merge(view1,view2) returns the union of view1 and view2.
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do at a random time once in each
consecutive interval of T time units

p ← selectPeer()
myDescriptor ← (myAddress,myProfile)
buffer ← merge(view,{myDescriptor})
buffer ← merge(buffer,rnd.view)
send buffer to p
receive bufferp from p
buffer ← merge(bufferp,view)
view ← selectView(buffer)

(a) active thread

do forever
receive bufferq from q
myDescriptor ← (myAddress,myprofile)
buffer ← merge(view,{myDescriptor})
buffer ← merge(buffer,rnd.view)
send buffer to q
buffer ← merge(bufferq,view)
view ← selectView(buffer)

(b) passive thread

Fig. 1. The T-Man protocol

The two key methods are selectPeer and selectView. Method selectPeer
uses the current view to return an address. First, it applies the ranking function
to order the elements in the view. Next, it returns the first descriptor (according
to this ordering) that belongs to a live node. Method selectView(buffer) also
applies the ranking function to order the elements in the buffer. Subsequently,
it returns the first c elements of the buffer according to ranking order.

The underlying idea is that in this manner nodes improve their views using
the views of their current neighbors, so that their new neighbors will be “closer”
according to the target topology. Since all nodes do the same concurrently, neigh-
bors in the subsequent topologies will be gradually closer and closer. This also
means that the views of the neighbors will keep serving as a useful source of
additional, even better links for the next iteration.

Last but not least, we need to explain the origin and role of the buffer
rnd.view. This buffer contains a random sample of the nodes from the entire
network. It is provided by a peer sampling service [3]. The peer sampling service
described in [3] is implemented in a very similar fashion: nodes periodically ex-
change their random views and update their local views thereby creating a new
random sample. These random views define an approximately random overlay
network. The buffer rnd.view is the current set of neighbors in this random
overlay network. The peer sampling service is extremely robust to failure and
maintains a connected network with a very high probability.

The role of the random buffer is most important in large diameter topologies.
In this case, if a node has a low quality neighbor set and if most of the rest of
the nodes have a high quality neighbor set (forming a large diameter topology,
e.g., a ring), then this node needs to perform many exchanges until it can reach
the optimal set of neighbors, because the speed of “finding its neighborhood”
is related to the diameter of the topology. The random buffer adds long range
links that help speeding up convergence.

Although the protocol is not synchronous, it is often convenient to refer to
cycles of the protocol. We define a cycle to be a time interval of T/2 time units
where T is the parameter of the protocol in Figure 1. Note that during a cycle,
each node is updated once on the average.
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after 3 cycles after 5 cycles after 8 cycles after 15 cycles

Fig. 2. Illustrative example of constructing a torus over 50×50 = 2500 nodes, starting
from a uniform random topology with c = 20. For clarity, only the nearest 4 neighbors
(out of 20) of each node are displayed.

Figure 2 illustrates the results of the protocol when used to construct a small
torus (visualizations were done using [5]). For this example, it is clear that 15
cycles are sufficient for convergence, and the target topology is already evident
even after very few cycles. As we will see, T-Man proves to be extremely scalable
and the time complexity of the protocol remains in this order of magnitude even
for a million nodes.

3.2 Optimizations

We can increase the performance of the protocol by applying two well known
techniques described in [1]. First, we set a connection limit of 1, that is, in each
interval of T time units (i.e., two cycles), we allow each node to receive at most
one connection. Since each node also initiates one connection in this interval, this
means that during two cycles, each node communicates at most twice. Second, we
also apply hunting, that is, instead of trying only one peer, each node actively
keeps looking for nodes (from the current view) that have not exceeded their
connection limit in the given interval. Our preliminary experiments indicate
that these techniques noticeably improve the convergence speed of T-Man.

As another possibility for optimization, note that a node does not need to send
the entire buffer containing the union of the fresh descriptor, the old view and
the random buffer. In fact, the contacted node will use at most the c closest items
from this buffer so it is sufficient to first sort the buffer applying the ranking
function of the peer, and sending the first c items. Since all nodes use the same
ranking function, they can easily emulate the ordering from the point of view of
any other node.

4 Simulation Experiments

All the simulation results presented in this paper were produced using PeerSim,
an open-source simulator developed at the University of Bologna [10].

We examine the three distance-based ranking functions that define the ring,
torus and binary tree topologies, as defined in Section 2. The motivation of this
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choice is that the ring is a large diameter topology and it is relevant for the
sorting application (Section 6.1), the binary tree is of a logarithmic diameter
and the torus is relevant in proximity problems being based on a 2-dimensional
grid. The network sizes (N) examined are 214, 217 and 220. We initialize the
profiles of the nodes in a regular manner, that is, in the case of the ring topol-
ogy, we assign the numbers 1, 2, . . . , N to the nodes, and likewise for the torus
((1, 1), (1, 2), . . . , (

√
N,

√
N)) and the binary tree (all binary strings of length

log2 N).
This regularity is not critical for the success of the protocol. On the contrary,

one of the important applications is sorting an arbitrary set of numbers, as we
argue in Section 6.1. However, this controlled setting allows us to monitor the
dynamics of the protocol in a more informed manner as the distance function
becomes equivalent to the hop count in the target topology defined by the links
that connect nodes at distance 1 (the target links). During the experiments we
focus on the dynamics of the number of target links that are found. As a measure
of performance, the convergence factor is defined as the factor by which the
number of target links found increases from one cycle to the next. Note that a
constant convergence factor means exponential increase.

The newscast protocol was used as the implementation of the peer sampling
service [3], which works very similarly to T-Man maintaining a dynamic ran-
dom overlay and using it to provide random peers. The newscast protocol is
extremely scalable and robust, and its communication cost is similar to that of
T-Man. The cache size of newscast was 30 and its cycle length was identical to
that of T-Man. In this section, we focus on convergence starting from a random
network, that is, the views are initialized at random and the nodes start to run
the protocol at the same time. In Section 5 we examine the effect of churn, that
is, with nodes continuously joining and leaving the network.

The results are shown in Figure 3. The results clearly indicate a logarithmic
relationship between network size and convergence speed. This is illustrated es-
pecially well by the plots comparing the convergence factor for different network
sizes as a function of time. We can see a constant shift of convergence time when
the network size is increased by the same multiplicative factor (23). Quite in-
terestingly, initial convergence does not depend on the view size c, nor does it
depend on the characteristics of the target topology.

When the topology has already converged, the few nodes that are still incor-
rectly linked can be though of as “climbing” on the converged structure during
the consecutive cycles of T-Man. This means that in this end phase convergence
time does depend on the target topology. Accordingly, in the binary tree topol-
ogy, we observe rapid convergence. In fact, logarithmic convergence, because the
evolved structure allows for efficient routing, being low diameter. Similar argu-
ments hold for the torus, only the convergence time there is not logarithmic but
grows with the square root of the network size in the worst case. In both cases,
we can observe fast convergence even for the smallest view size.

The case of the ring is different, because the target topology has a large diam-
eter that grows linearly with the network size, so the remaining few misplaced
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Fig. 3. Comparison of convergence speed in the initial phase and in the final phase for
network sizes N = 214, 217, 220 and c = 20, 40, 80 for the ring, torus and binary tree
topologies. The results displayed are averages of 10 runs for N = 214 and N = 217, and
show a single run for the case N = 220.
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nodes reach their destination slower. Still, for c = 80 we have perfect convergence
after cycle 72 even for N = 220, and only a small percentage of target links are
missing with c = 20 and c = 40. For the smaller network sizes we always observe
full convergence in less than 80 cycles, independently of the characteristics of
the target topology.

5 Self-healing

In this section we consider scenarios with churn, that is, with nodes constantly
leaving and joining the network. We introduce a simple extension of the proto-
col to increase its adaptivity and subsequently we experimentally evaluate the
proposed solution.

5.1 Age-Based View Update

We extend the protocol given in Figure 1 by a simple technique to handle dy-
namic environments. The key idea is that we remove a few old descriptors from
the view in each cycle. As a result, we expect to decrease the number of “dead
links”, that is, descriptors describing nodes that are no longer in the network.
By decreasing the number of dead links, we expect to increase the quality of the
views of the live nodes.

To implement this idea, the node descriptors stored in the view must also con-
tain an age field. This field is initialized to be zero (when the node adds its own
descriptor to the buffer to send) and increased for all view entries every time the
node communicates. Before merging the view to the buffer to be sent, each node
removes the H oldest descriptors from the view. Finally, the merge operation has
to be modified to prefer the freshest item when removing duplicate items.

5.2 Experimental Results

To test the efficiency of this solution, we performed experiments with different
scenarios involving churn. In all experiments, network size was 104, and c = 20.
The cache size of newscast (the applied peer sampling service) was 30 and its
cycle length was identical to that of T-Man. Churn was modeled by removing
a given percentage of randomly selected nodes from the network in each cycle
and replacing them with new nodes that were initialized with random links.
The ranking function defined a 1-dimensional ring. However, due to churn, node
profiles were initialized by a random 62 bit integer, not regularly as in Section 4.
For this reason, to define a connected ring, we applied the direction dependent
version of the ranking function as described in Section 6.1.

The results of the experiments, illustrating various settings for the healing
parameter H and churn rates, are shown in Figure 4. First of all, note that the
churn rates can be considered very high. If we set the cycle length parameter
T/2 = 10s, then, based on the Gnutella trace described in [12], the churn rate is
less than 0.2% per cycle. In this light, 5% or especially 10% churn is extremely
high.
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Fig. 4. Experimental results in the presence of churn. N = 10, 000, c = 20.

Each point in the plots was generated by running the respective scenario
until 300 cycles, to make sure that the proportion of correctly identified target
links converges, and taking this converged value. The first observation is that
over all the nodes, high churn rates decrease the overall quality of the views in
the network quite significantly. However, for such high churn rates, the network
always contains many newcomers. If we consider the convergence times presented
in Section 4, we can note that for a newcomer at least 10 cycles are necessary to
optimize its view, so we cannot reasonably expect better performance according
to this measurement. However, if we restrict ourselves to nodes that are old
enough, we get a very different picture. For H = 1 and H = 2, we observe a very
good quality network even for churn rates of 10% which is especially notable
because the expected lifetime of a node in this network is only 10 cycles. In
fact, the number of nodes older than 10 cycles is around 3500, one third of the
network.

We can also observe that too aggressive “healing” in fact damages the network
even when there is no churn. The setting H = 6 is consistently worse than any
other setting. However, the positive effect of self-healing can be observed when
comparing the case of H = 1 with H = 0 (no healing). This consistently results
in a significant performance improvement. In general, H = 1 appears to be the
best choice, except in the most extreme churn where H = 2 is slightly better.
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As a final note, it is interesting to observe that performance is in fact no so
bad even without the application of the healing method (H = 0). This is due
to the fact, that in our scenarios the overall number of dead links is guaranteed
not to decrease below 50%. To see this, consider the case when the proportion of
dead links is p in the network and we remove n nodes, replacing them by n new
nodes, that have links to random live nodes. Due to the removal, the number of
dead links on average decreases by ncp while it increases by the number of links
that pointed to these nodes: on average nc(1− p). if we assume that all nodes in
the network have the same in-degree (it is true for our ranking function here).
This dynamics always converges to p = 0.5. This fact emphasizes the importance
of the bootstrapping method, especially in the presence of extreme churn.

6 Application Examples

The primary goal of this section is to underline the generality of the approach
by outlining the main ideas in using T-Man to solve some potentially important
applications.

6.1 Clustering and Sorting

So far we have considered rather artificial settings to understand the behavior of
T-Man better. In particular, the profiles of the nodes were initialized in a regular
manner. In practice this will hardly happen. Typically, the properties of the
nodes follow some specific distribution. This distribution can also be “patchy”,
there can be dense clusters separated by unrepresented regions in the profile
space. Very informally, when applying T-Man in such a setting using a simple
distance-based ranking function, the resulting topology will be clustered and
most likely disconnected, because nodes in the same cluster will eventually be
linked to each other only. An illustrative example is given in Figure 5 for the 1-
and 2-dimensional cases. In many applications, like clustering based on semantic,
geographic or any other definition of proximity, this property can be exploited
to find the desired clusters.

In the case of the sorting problem, where we would like to connect each node
to those nodes that directly preceed and follow them according to some total
ordering relation, we need to prevent clustering. This can be achieved by the fol-
lowing direction dependent ranking. First, separate the set of nodes to be ranked
into two groups: one that is to the left, and another that is to the right of the
base node. Order these two sets according to the underlying desired ordering.
Merge the ordered sets so that a node that had index i in any of the sets is as-
signed index 2i or 2i + 1 in the final ranking, choosing randomly between these
two possibilities. Applying the 1-dimensional ranking function makes it possible
to practically reduce the sorting problem to the one dimensional topology con-
struction problem that we have studied extensively in Section 4. In Section 5 we
used exactly this sorting method as a ranking function.

Direction dependent ranking can be easily extended to other problems, for
example, creating a connected topology in two dimensions that reflects geo-



12 M. Jelasity and O. Babaoglu

(a) 1-dimensional, distance based (b) 1-dimensional, direction dependent

(c) 2-dimensional, distance based (d) 2-dimensional, direction dependent

Fig. 5. Illustrative example of converged topologies obtained with distance-based and
direction dependent ranking, with N = 1000, c = 20. The line is displayed as spiral for
convenience. Only the closest 2 and 4 links are shown from each node for the 1- and
2-dimensional example, respectively.

graphical proximity. In this case, a node divides the space into four quarters,
and classifies each node to be ranked into four categories accordingly. The node
then sorts the nodes in each class according to an underlying distance function,
and produces the ranking similarly to the two dimensional case: if a node has
index i in any of the four quarters, then it will be assigned an index randomly
from between 4i and 4i + 3.

The effect of direction dependent ranking is illustrated by two small examples
in Figure 5. In the case of both the distance based and direction dependent rank-
ing the nodes are mapped to points forming the plotted structures: equal length
intervals in 1-dimension and letter-shaped clusters in 2-dimensions. The profile
of the nodes is defined as their 1- or 2-dimensional coordinates, respectively.
Observe the clustering effect with the distance based ranking and, with direc-
tion dependent ranking, the perfect sorting in 1-dimension and the connected
topology in 2-dimensions.

6.2 A DHT

As an illustration, we very briefly present a simplistic way of evolving a dis-
tributed hashtable (DHT) topology with T-Man. The ranking function for the
target topology is defined by a XOR-based distance. The distance we use is not
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that of [7]. Instead, we define the XOR distance over a set of binary numbers
as the number of bit positions in which they have a different digit. This ranking
function is responsible for evolving long range links. The idea is that in this
topology each node should know about nodes that differ from it in a few digits
only, resulting in a link set pointing to ID-s with a varying length of common
prefix (including long prefixes); a well known way of achieving efficient routing.

As a backup, we also evolve a sorted ring topology using another instance of T-
Man as described above, to maximize the probability that routing is successful.
The routing table is composed of the neighbors in these two topologies, and the
next hop for a target is selected based on numeric difference between the ID of
the target and the table entries (now interpreting ID-s as numbers). We require
strictly decreasing difference to avoid loops. The links from the ring topology
are used only if no suitable links are available in the XOR-based topology. If the
distance cannot be decreased but the target is not found, the routing attempt
is failed.

Figure 6 illustrates the convergence of the routing performance while the
topology is being evolved, starting from random routing tables. We can observe
that the number of missed targets quickly becomes insignificant (from cycle 23
only 3 cases out of the 5300 shown in the figure), and the hop count of both
the successful and unsuccessful routes remains low. Note that in our example,
assuming a perfect topology, the worst case hop count would be 20.

Finally, note that this approach is mainly for illustration. The protocol pre-
sented in [8] for building the Chord [13] DHT represents a more realistic example.
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7 Conclusions and Future Work

We have presented a protocol for topology management, T-Man, that is simple,
general and fast. Simplicity makes it easier to implement, debug and understand.
Generality allows it to be applied as an off-the-shelf component for prototyping
or even as a production solution that could be implemented even before the
final desired topology is known. In fact, the ranking function can be generated
dynamically by users, or by some monitoring service, and the corresponding
topology can be created on the fly. Finally, speed makes it possible to construct
a topology quickly from scratch (recovery from massive failures or bootstrapping
other protocols on demand) or where topology maintenance is in fact equivalent
to the continuous re-creation of the topology (for example, due to massive churn).

Our current work is towards the application of T-Man for jump-starting ex-
isting DHT implementations and providing them robustness in the presence of
massive failures and extreme churn [8]. We are also continuing our study of
T-Man at an abstract level to better understand its behavior and characterize
its scope and performance. In particular, it would be important to characterize
the class of topologies that are “easy” or “difficult” for T-Man. Note that any
arbitrary topologies can be expressed by at least one appropriate ranking func-
tion; in fact in general by many ranking functions: any function that ranks the
neighbors in the target topology highest is suitable. This means that the open
questions are: which of the possible ranking functions is optimal for a given
problem, and how does convergence and the speed of convergence depend on
the different topologies. Although the protocol does certainly not work with the
same efficiency for all problems, we observed very similar performance for rather
different and important topologies, so the empirical results are promising.
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6. Laurent Massoulié, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh. Network
awareness and failure resilience in self-organising overlays networks. In Proceedings
of the 22nd Symposium on Reliable Distributed Systems (SRDS 2003), pages 47–55,
Florence, Italy, 2003.

7. Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric. In Proceedings for the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA, 2001.

8. Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Chord on demand. In
Proceedings of the Fifth IEEE International Conference on Peer-to-Peer Comput-
ing (P2P 2005), pages 87–94, Konstanz, Germany, August 2005. IEEE Computer
Society.

9. Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-diameter
peer-to-peer networks. IEEE Journal on Selected Areas in Communications
(JSAC), 21(6):995–1002, August 2003.

10. PeerSim. http://peersim.sourceforge.net/.
11. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems. In Rachid Guerraoui, editor,
Middleware 2001, volume 2218 of Lecture Notes in Computer Science, pages 329–
350. Springer-Verlag, 2001.

12. Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. Measuring and an-
alyzing the characteristics of Napster and Gnutella hosts. Multimedia Systems
Journal, 9(2):170–184, August 2003.

13. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), pages 149–160, San
Diego, CA, 2001. ACM, ACM Press.

14. Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust
and scalable technology for distributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems, 21(2):164–206, May 2003.

15. Spyros Voulgaris and Maarten van Steen. An epidemic protocol for managing
routing tables in very large peer-to-peer networks. In Proceedings of the 14th
IFIP/IEEE International Workshop on Distributed Systems: Operations and Man-
agement, (DSOM 2003), number 2867 in Lecture Notes in Computer Science.
Springer, 2003.

16. Beverly Yang and Hector Garcia-Molina. Designing a super-peer network. In Pro-
ceedings of the 19th International Conference on Data Engineering (ICDE 2003),
Los Alamitos, CA, March 2003. IEEE Computer Society Press.



Basic Approach to Emergent Programming:
Feasibility Study for Engineering Adaptive

Systems Using Self-organizing Instruction-Agents

Jean-Pierre Georgé, Marie-Pierre Gleizes, and Pierre Glize

IRIT, Université Paul Sabatier,
118 route de Narbonne, 31400 Toulouse, France

{george, gleizes, glize}@irit.fr

Abstract. We propose to investigate the concept of an Emergent Pro-
gramming Environment enabling the development of complex adaptive
systems. This is done as a means to tackle the problems of the growth
in complexity of programming, increasing dynamisms in artificial sys-
tems and environments, and the lack of knowledge about difficult prob-
lems and their solutions. For this we use as a foundation the concept
of emergence and a multi-agent system technology based on cooperative
self-organizing mechanisms.

The general objective is then to develop a complete programming
language in which each instruction is an autonomous agent trying to be
in a cooperative state with the other agents of the system, as well as with
the environment of the system. By endowing these instruction-agents
with self-organizing mechanisms, we obtain a system able to continuously
adapt to the task required by the programmer (i.e. to program and re-
program itself depending on the needs). The work presented here aims at
showing the feasibility of such a concept by specifying, and experimenting
with, a core of instruction-agents needed for a sub-set of mathematical
calculus.

1 Introduction

In the last few years, the use of computers has spectacularly grown and classical
software development methods run into numerous difficulties. Operating sys-
tems are a good example of extremely complex software which are never exempt
of problems. The classical approach, by decomposition into modules and total
control, cannot guaranty the functionality of the software given the complexity
of interaction between the increasing and variable number of modules, and the
shear size of possibilities. Adding to this, the now massive and inevitable use
of network resources and distribution only increases the difficulties of design,
stability and maintenance.

1.1 Neo-computation Problems

This state is of interest to an increasing number of industrials, including IBM
who wrote in a much relayed manifesto : "Even if we could somehow come up
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with enough skilled people, the complexity is growing beyond human ability to
manage it. Pinpointing root causes of failures becomes more difficult, while find-
ing ways of increasing system efficiency generates problems with more variables
than any human can hope to solve. Without new approaches, things will only get
worse" [14].

These kind of applications are what we call neo-computation problems, namely:
autonomic computing, pervasive computing, ubiquitous computing [18], emer-
gent computation, ambient intelligence, amorphous computing... This set of
problems have in common the inability to define the global function to achieve,
and by consequence to specify at the design phase, a derived evaluation function
for the learning process. They are characterized by :

– a great number of interacting components (intelligent objects, agents, soft-
ware);

– a variable number of these components during runtime (open system);
– the impossibility to impose a global control;
– an evolving and unpredictable environment;
– a global task to achieve.

1.2 Problem Solving by Emergence

Given the previous characteristics, the challenge is to find new approaches to
conceive these new systems by taking into account the increasing complexity
and the fact that we want reliable and robust systems. For this, because of the
similarities, it seems opportune to look at natural systems - biological, physical or
sociological - from an artificial system builder’s point of view so as to understand
the mechanisms and processes which enable their functioning.

In Biology for example, a lot of natural systems composed of autonomous
individuals exhibit aptitudes to carry out complex tasks without any global
control. Moreover, they can adapt to their surroundings either for survival needs
or to improve the functioning of the collective. This is the case for example in
social insects colonies [4] such as termites and ants [3]. The study of swarm
behaviours by migratory birds or fish shoals also shows that the collective task
is the result of the interactions between autonomous individuals. Non supervised
phenomena resulting from the activity of a huge number of individuals can also
be observed in human activities such as the synchronization of clapping in a
crowd or traffic jams. But the most surprising is still the appearance of human
consciousness out of the chemical and electrical jumble of our brain.

There is a common factor among all theses systems : the emergent dimension
of the observed behaviour. Thus it is quite legitimate to study emergence so as to
understand its functioning or at least to be able to adequately reproduce it for the
design of artificial systems. This would enable the development of more complex,
robust and adaptive systems, needed to tackle the difficulties inherent to neo-
computation problems. In this way, interesting and useful emergent phenomena
will be used in artificial systems when needed. Contrariwise, they will still appear
sooner or later the more complex the systems are getting but will be unexpected
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and unwanted. To prevent this, one orientation would be, in our opinion, that the
scientific community studies and develops new theories based upon emergence.
The prerequisites of such a theory could be resumed in four points :

– to start from the Systems Theory field;
– to focus on the parts of the system and their functioning;
– to depend neither from the systems finality, nor its environment (there can

still be constraints or some form of feedback but there should be no imposed
behaviour for the system);

– to be independent from the material support into which a given system will
be incarnated (biological, technological, ...) : it has to be generic;

It is noteworthy that some research is already being done for quite some
years now to bring emergence into artificial systems, but it is still very localized.
For example, the Santa Fe Institute has acquired an international renown for
its works on complexity, adaptive complex systems and thus emergence. These
are also the preoccupations of Exystence, the European excellence network on
complex systems, or the recently begun ONCE-CS, the Open network of Centres
of Excellence in Complex Systems.

1.3 Going to the Lowest Level: The Instructions

If we suppose that we can manage to use the emergent phenomena to build
artificial systems, this will be by specifying the behaviour of the parts of the
systems so that it will enable their interactions to produce the expected global
emergent behaviour of the system. A relevant question would be to ask about
what parts we are focusing on and on which level. As with classical software
engineering, any decomposition could be interesting, depending on the nature of
the system being build.

We propose here to focus on the lowest possible level for any artificial system :
the instruction level. We will explain our theoretical and experimental exploration
of the concept of Emergent Programming. This concept is explained in the next
section (section 2). Its use relies on emergence and self-organization (section 5) on
one hand, and on a multi-agent approach called AMAS (Adaptive Multi-Agent
System)[11] (section 3) on the other hand. A sub-problem which we called the ele-
mentary example has been thoroughly explored and is presented in section 4 where
we then show how the learned lessons can lead us forward in our exploration of
Emergent Programming and more generally of problem solving using emergence.

2 Emergent Programming

2.1 The Concept

In its most abstract view, Emergent Programming is the automatic assembling
of instructions of a programming language using mechanisms which are not ex-
plicitly informed of the program to be created. We may consider that for a
programmer to produce a program comes down to finding which instructions to
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assemble and in which precise order. This is in fact the exploration of the search
space representing the whole set of possible programs until the right program is
found. However, if this exploration is easy when the programmer has a precise
knowledge about the program he wants and how to obtain it, it grows more
and more difficult with the increase of complexity of the program, or when the
knowledge about the task to be executed by the program becomes imprecise
or incomplete. Then are we not able to conceive an artificial system exploring
efficiently the search space of the possible programs instead of having the pro-
grammer do it ? Only very few works exists on this topic. One noteworthy try
has been done by Koza using Genetic Algorithms and a LISP language [16], but
the main hindrance of GA is the need for a specific evaluation function for each
problem, which can be very difficult to find. At the opposite, we aim at an as
generic as possible approach.

To approach the problem of Emergent Programming concretely, we chose to
rely on an adaptive multi-agent system using self-organizing mechanisms based
on cooperation as it is described in the AMAS theory. This theory can be con-
sidered as a guide to endow the agents with the capacity to continuously self-
organize so as to always tend toward cooperative interactions between them
and with the environment. It then claims that a cooperative state for the whole
system implies the functional adequacy of the system, i.e. that it exhibits a be-
haviour which satisfies the constraints of the parts of the system as well as from
the environment (e.g. a user).

2.2 The Instruction-Agents

In this context, we define an agent as an instruction of a programming language.
Depending on the type of the instruction he is representing, the agent pos-
sesses specific competences which he will use to interact with other instruction-
agents. A complete program is then represented by a given organization of the
instruction-agents in which each agent is linked with partners from which he
receives data and partners to which he sends data. The counterpart of the exe-
cution of a classical program is here simply the activity of the multi-agent system
during the exchange of data between the agents.

2.3 The Reorganization Process

We can now appreciate all the power of the concept : a given organization codes
for a given program, and thus, changing the organization changes the final pro-
gram. It comes down to having the agents self-organize depending on the re-
quirements from the environment so as to continuously tend toward the adequate
program (the adequate global function). In principle, we obtain a system able to
explore the search space of the possible programs in place of the programmer.
Everything depends on the efficiency of the exploration to reach an organization
producing the right function. An important part of our work on Emergent Pro-
gramming has been the exploration of the self-organization mechanisms which
enable the agents to progress toward the adequate function, depending on the
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constraints of the environment but without knowing the organization to reach
or how to do it (since this is unknown for the problems we are interested in).

2.4 A Neo-programming Environment

The system will not be able to grow ex nihilo all by itself, all the more if
we want to obtain higher level programs (programs with more complex be-
haviours). As the programmer with his classical programming environment, the
neo-programmer will have to affect the development of the system through a neo-
programming environment, at least at the beginning. It is a matter of supplying
the tools to shape the environment of the system so as to have this environment
constrain the system toward the adequate function. But in a pure systems the-
ory’s view, the neo-programmer is simply part of the environment of the system.

But the neo-programming environment will certainly have to be more than a
simple envelope for the developing system. We will probably need to integrate
some tools for the observation of the evolution of the system, means to influence
this evolution, the type and proportions of instruction-agents, to affect some
aspects of the structure. Moreover, a complex program is generally viewed as a
modular construct and the neo-programmer may want to influence this modular
structure, either by manipulating some sorts of "bricks", each being an emer-
gent programming system, or by letting these "bricks" self-organize in the same
manner as their own components.

At the end, we will obtain a system able not only to "find" how to realize the
adequate function, but also to continuously adapt to the environment in which it
is plunged, to react to the strongly dynamic and unpredictable nature of real world
environments, andall this bypresenting ahigh grade of robustness. Indeed, because
of its nature, the system would be able to change its internal structure any time
and by consequence its performed function, or even grow by adding instructions to
respond to some partial destruction or to gain some new competences.

The research we did on Emergent Programming was to explore the feasibility
of the concept. For this, we restrained the programming language to the instruc-
tions needed for a subset of mathematical calculus, of which the elementary ex-
ample (section 4) is a representative. We specified such a core of agents and put it
through experimentation. For this an environment has been implemented : EPE
(Emergent Programming Environment) [9]. These experimentations enabled us
to explore different self-organization mechanisms for the instruction-agents so as
to find those who lead to the emergence of the adequate function. Part of these
mechanisms are described here.

3 Using Cooperative Agents as the Engine for
Self-organization

3.1 Adapt the System by Its Parts

We consider that each part Pi of a system S achieves a partial function fpi of the
global function fs (Figure 1). fs is the result of the combination of the partial
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Fig. 1. Adaptation: changing the function of the system by changing the organization

functions fpi, noted by the operator "o". The combination being determined by
the current organization of the parts, we can deduce fs = fp1 o fp2 o ... o fpn. As
generally fp1 ofp2 �= fp2 ofp1, by transforming the organization, the combination
of the partial functions is changed and therefore the global function fs changes.
This is a powerful way to adapt the system to the environment. A pertinent
technique to build this kind of systems is to use adaptive multi-agent systems.
As in Wooldridge’s definition of multi-agent systems [19], we will be referring
to systems constituted by several autonomous agents, plunged in a common
environment and trying to solve a common task.

3.2 The Theorem of Functional Adequacy

Cooperation was extensively studied in computer science by Axelrod [1] and Hu-
berman [15] for instance. "Everybody will agree that co-operation is in general
advantageous for the group of co-operators as a whole, even though it may curb
some individual’s freedom" [12]. Relevant biological inspired approaches using
cooperation are for instance Ants Algorithms [7] which give efficient results in
many domains. In order to show the theoretical improvement coming from co-
operation, we have developed the AMAS (Adaptive Multi-Agent System)[11]
theory which is based upon the following theorem. This theorem describes the
relation between cooperation in a system and the resulting functional adequacy1

of the system.
1 "Functional" refers to the "function" the system is producing, in a broad meaning,

i.e. what the system is doing, what an observer would qualify as the behaviour of a
system. And "adequate" simply means that the system is doing the "right" thing,
judged by an observer or the environment. So "functional adequacy" can be seen as
"having the appropriate behaviour for the task".



22 J.-P. Georgé, M.-P. Gleizes, and P. Glize

Theorem. For any functionally adequate system, there exists at least one co-
operative internal medium system that fulfils an equivalent function in the same
environment.

Definition. A cooperative internal medium system is a system where no Non-
Cooperative Situations exist.

Definition. An agent is in a Non-Cooperative Situation (NCS) when : (1) a per-
ceived signal is not understood or is ambiguous; (2) perceived information does not
produce any activity of the agent; (3) the conclusions are not useful to others.

3.3 Consequence

This theorem means that we only have to use (and hence understand) a subset of
particular systems (those with cooperative internal mediums) in order to obtain
a functionally adequate system in a given environment. We concentrate on a
particular class of such systems, those with the following properties [11]:

– The system is cooperative and functionally adequate with respect to its
environment. Its parts do not ’know’ the global function the system has to
achieve via adaptation.

– The system does not have an explicitly defined goal, rather it acts using its
perceptions of the environment as a feedback in order to adapt the global
function to be adequate. The mechanism of adaptation is for each agent to try
and maintain cooperation using their skills, representations of themselves,
other agents and environment.

– Each part only evaluates whether the changes taking place are cooperative
from its point of view - it does not know if these changes are dependent on
its own past actions.

This way of engineering systems has been successfully applied on numer-
ous applications with very different characteristics for the last ten years (au-
tonomous mechanisms synthesis[6], flood forecast[10], electronic commerce and
profiling,...). On each, the local cooperation criterion proved to be relevant to
tackle the problems without having to resort to an explicit knowledge of the goal
an how to reach it.

3.4 The Engine for Self-organization

The designer provides the agents with local criterion to discern between coop-
erative and non-cooperative situations. The detection and then elimination of
NCS between agents constitute the engine of self-organization. Depending on
the real-time interactions the multi-agent system has with its environment, the
organization between its agents emerges and constitutes an answer to the afore-
mentioned difficulties of neo-computation problems (indeed, there is no global
control of the system). In itself, the emergent organization is an observable or-
ganization that has not been given first by the designer of the system. Each agent
computes a partial function fpi, but the combination of all the partial functions
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produces the global emergent function fs. Depending on the interactions between
themselves and with the environment, the agents change their interactions i.e.
their links. This is what we call self-organization.

By principle, the emerging purpose of a system is not recognizable by the
system itself, its only criterion must be of strictly local nature (relative to the
activity of the parts which make it up). By respecting this, the AMAS theory
aims at being a theory of emergence.

4 The Elementary Example

We tried to find an emergent programming system as simple as possible (i.e. with
the smallest number of agents with the simplest functioning), but still needing
reorganizations so as to produce the desired function. The advantages of such
a case study are that it is more practical for observation, that it leads to less
development complexity and that it presents a smaller search space.

4.1 Description

The specification of each agent depends on the task he has to accomplish, of his
"inputs" and "outputs". The agents communicate by messages but to accomplish
the actual calculation, we can consider that the agents are expecting values as
inputs to be able to provide computed values as outputs. Schematically, we can
consider exchanges between agents as an electronic cabling between outputs and
inputs of agents.
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Fig. 2. The 6 different possible types of functional organizations for the elementary
example
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The elementary example we choose is constituted of 6 agents : 3 "constant"
agents, an "addition" agent, a "multiplication" agent and an "output" agent. A
"constant" agent is able to provide the value which has been fixed at his cre-
ation. The 3 the system contains have been given sufficiently different values so
as to prevent calculation ambiguity : AgentConstantA (value = 2), AgentCon-
tantB(value = 10) and AgentConstantC (value = 100). Combined with Agen-
tAddition and AgentMultiplication, the values produced by the system are results
from organizations like (A+B)∗C or any other possible combination. AgentOut
simply transmits the value he receives to the environment. But he is also in
charge of retrieving the feedback from the environment and forward it into the
system.

The size of the complete search space is 65, that is 7776 theoretically possible
organizations, counting all the incomplete ones (i.e. where not every agent has
all his partners). There are 120 complete organizations and among those, 24
are functional (they can actually calculate a value) if we count all the possible
permutations on the inputs which do not change the calculated value. In the end,
we have 6 types of different organization (cf. Figure 2) producing these 6 values :
120, 210, 220, 1002, 1020 and 1200. The aim is to start without any partnerships
between agents and to request that the system produces the highest value for
example.

4.2 Reorganization Mechanisms

In accordance with the AMAS theory, the agent’s self-organizing capacity is
induced by their capacity to detect NCS (Non-Cooperative Situations), react so
as to resorb them and continuously act as cooperatively as possible. This last
point implies in fact that the agent also has to try to resorb NCS of other agents
if he is aware of them: to ignore a call for help from another agent is definitely
not cooperative. We will illustrate this with the description of two NCS and how
they are resorbed.

Detection
NCSNeedIn : The agent is missing a partner on one of his inputs. Since to be
cooperative in the system he has to be useful, and to be useful he has to be able
to compute his function, he has to find partners able to send values toward his
input.

Most NCS lead the agent to communicate so as to find a suitable (new)
partner. These calls, because the agents have to take them into account, also
take the shape of NCS.

NCSNeedInMessage : The agent receives a message informing him that another
agent is in a NCSNeedIn situation.

Resorption
NCSNeedIn : This is one of the easiest NCS to resorb because the agent only has
to find any agent for his missing input. And the agents are potentially always able
to provide as many values on their outputs for as many partners as needed. The
agent has simply to be able to contact some agent providing values of the right
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type (there could be agents handling values of different types in a system), i.e.
corresponding to his own type. So he generates a NCSNeedInMessage describing
his situation (his needs) and send it to his acquaintances (because they are the
only agents he knows).

NCSNeedInMessage : The agent is informed of the needs of the sender of the
NCS and his cooperative attitude dictates him to act. First, he has to judge if
he is relevant for the needs of the sender, and if it is the case, he has to propose
himself as a potential partner. Second, even if he is not himself relevant, one of its
acquaintances may be. He will do what the AMAS theory calls a resorption by
restricted propagation : he tries to counter this NCS by propagating the initial
message to some acquaintances he thinks may be the most relevant.

For each NCS the agent is able to detect (there are 10 NCS in total for these
agents), a specific resorption mechanism has been defined. It is a precise descrip-
tion of the decision making of the agent depending on his state and on what it
perceives. For other NCS, the mechanisms become quite complicated, and require
a long description. For an exhaustive presentation, please refer to [9].

These NCS and their symmetric for a missing partner on an output enable the
system to produce an organization where each agent has all his needed partners.
To obtain the functional adequacy for the system means that the final organiza-
tion is able to produce the expected result. The main question is how to introduce
mechanisms in the resorption of the NCS to enable the agents as a whole to reach
this organization. For this, they need some kind of "direction" (but on local crite-
rion) to get progressively closer to the solution, a local information to judge this
proximity. The information used here is simply a "smaller/bigger" feedback type
that the environment sends to the system and that will be dispatched between
the agents by propagation and by taking other the goal (smaller or bigger). The
agent then tries to satisfy its new goal and staying at the same time the most
cooperative possible with the other agents. This will bring the system as a whole
to produce a smaller or bigger value.

Of course, the agents will get into conflict with other agents when trying to
reach these goals and the self-organizing mechanisms take that into account.
Each agent also manipulates a knowledge about the prejudice he inflicts or may
inflict following changes he induces in the organization. For this, the agents
communicate to each other, when necessary, their current goal and state. When
choosing a new partner an agent takes into account the impact of its decision
upon the concerned agents, i.e which agents will be hindered from reaching their
goal, which agents will be in a worse state than before and in what proportion.
By minimizing these prejudices (which is a form of cooperation), the whole
organization progresses.

It is important to note that the information which is given as a feedback is not
in any way an explicit description about the goal and how to reach it. Indeed,
this information does not exist : given a handful of values and mathematical
operators, there is no explicit method to reach a specific value even for a human.
They can only try and guess, and this is also what the agents do. That is why
we believe the resolution we implemented to be in the frame of emergence.
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4.3 Results and Discussion

Results. The elementary example has been implemented in Java as a multi-
threaded agent platform able to run any type of instruction-agents. It also sim-
ulates the environment for an organization of instruction-agents and provides
tools for the observation and analysis of the reorganization process.

First of all, the internal constraints of the system are solved very quickly : in
only a few reorganization moves (among the 7776 possible organizations), all the
agents find their partners and a functional organization is reached. Then, because
the system is asked to produce the highest value for example (configuration 6,
Figure 2), other NCS are produced and the system starts reorganizing toward its
goal. In accordance with the AMAS theory, the system is considered to provide
an adequate behaviour when no more NCS are detected (the environment is
satisfied by the produced results).

On a few hundred simulations, the functional adequacy is reached in a very
satisfactory number of organization changes. Since the search space if of 7776
possible organizations, a blind exploration would need an average of 3.888
checked organizations to reach a specific one. Since a functional organization pos-
sesses 4 identical instances for a given value (by input permutations), we would
need 972 tries to get the right value. Experimentation shows that, whatever the
initial organization (without any links or one of the 6 functionals), the system
needs to explore less than a hundred organizations among the 7776 to reach
one of the 4 producing the highest value. We consider that this self-organization
strategy allows a relevant exploration of the search space. A noteworthy result
is also that whatever organization receives the feedback for a better value, the
next organization will indeed produce a better value (if it exists).

Emergent Programming : A Universal Tool. If we define all the agents
needed to represent a complete programming language (with agents representing
variables, allocation, control structures, ...) and if this language is extensive
enough, we obtain maximal expressiveness : every program we can produce with
current programming languages can be coded as an organization of instruction-
agents. In its absolute concept, Emergent programming could then solve any
problem, given that the problem can be solved by a computer system. Of course,
this seems quite unrealistic, at least for the moment.

Problem Solving Using Emergence. But if we possess some higher-level
knowledges about a problem, or if the problem can be structured at a higher
level than the instruction level, then it is more efficient and easier to conceive the
system at a higher level. This is the case for example when we can identify entities
of bigger granularity which therefore have richer competences and behaviours,
maybe adapted specifically for the problem.

Consequently, we will certainly be able to apply the self-organizing mecha-
nisms developed for Emergent Programming to other ways to tackle a problem.
Indeed, instruction-agents are very particular by the fact that they represent
the most generic type of entities and that there is a huge gap between their
functions and the function of a whole program. The exploration of the search
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space, for entities possessing more information or more competences for a given
problem can only be easier. In the worst case, we can always try to use Emergent
Programming as a way to specify the behaviour of higher-level entities (recursive
use of emergence).

Let us consider for instance the problem of ambient intelligence : in a room,
a huge number of electronic equipments controlled each by an autonomous mi-
crochip have as a goal the satisfaction of the users moving around it from day to
day. The goal itself, user satisfaction, is really imprecise and incomplete, and the
way to reach it even more. We claim that this problem is an ideal candidate for a
problem solving by emergence approach: let us endow the entities with means to
find by themselves the global behaviour of the system so as to satisfy the users.
The challenge is to define the "right" self-organizing behaviours for the different
equipments for them to be able to modify the way they interact to take into
account the constraints of every one of them plus the external stimuli from the
users (order, judgement, behaviour, ...). And we are convinced that this can only
be done if the self-organization mechanisms tightly fit the frame of emergence.

5 Emergence and Self-organization

If we study specialized literature on emergence or self-organization, we can see
that these are tightly linked. Yet, at the same time, we can see a lot of works
focusing exclusively on the second without any mention, or only a brief, about the
first. One explanation could be that the notion of emergence is quite abstract,
even philosophical, making it difficult to fully grasp and therefore delicate to
manipulate. At the opposite, self-organization is more concrete by its description
in terms of mechanisms and thus, more easily used. But by concentrating solely
on the mechanisms, are we not taking the risk to leave the frame of emergence?
We give here a description of self-organization integrating emergence.

5.1 What Is Self-organization ?

The self-organization field has from the very beginning tried to explore the in-
ternal mechanisms of systems producing emergent phenomena[2]. They tried to
find the general functioning rules explaining the growth and evolution of the ob-
served systemic structures, to find the shapes the systems could take, and finally
to produce methods to predict the future organizations appearing out of changes
happening at the component level of the systems. And these prospective results
had to be applicable on any other system exhibiting the same characteristics
(search for generic mechanisms). There are abundant definitions and descrip-
tions of characteristics of emergence and self-organization in literature. We can
sum it up as this:

Definition. Self-organization is the set of processes within a system, stemming
from mechanisms based on local rules which lead the system to produce struc-
tures or specific behaviours which are not dictated by the outside of the system
[8][13][17].
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5.2 Understanding Self-organization

In most definitions about emergence and self-organization, there is the notion
under some form or another of strictly local rules and resulting behaviours.
There is also the strong constraint for these behaviors not to be imposed, dic-
tated, explicitly informed or constrained by the environment of the system. The
local character of a rule gives a strict and clear framework. But concerning the
influence of the environment on the system, being it directly or through some
internal rules, the exact characterization of this influence can be particularly
difficult and vague.

Let us take the example of Bénard convection cells which is a classical exam-
ple of self-organization. The phenomenon produced by self-organization is here
the shape of the movement of water molecules which creates these particular
observable flux structures (when looking top down at water just before it starts
boiling, we can see hexagonal cells covering the bottom). The local rules are here
the movement and collisions of the molecules. The fact that the molecules move
more easily when they move in the same direction (because of less collisions)
creates circulation fluxes. But the surfaces of the container as well as the influx
of heat which forces the molecules to move are indeed part of the environment
of the system and influence the behaviour of the system. We then have to decide
of the impact and nature of this influence on the behaviour of the molecules and
system. We can argue that it is indeed this influx of heat which compels the
molecules to move and that the surfaces of the container also strongly constrain
these movements. But this is not enough to explain how the molecules have
to move, only that they have to, and in a given border. It is indeed the local
collision rules which lead to the emergence of the hexagonal cells. The frame of
self-organization seems here relatively clear after analysis but could have been
argued against at the beginning.

In fact, in many cases the environment dictates very strong templates for
the system to follow. Even if these templates are followed at a local level by
autonomous entities, the more strong and precise they are, the less we think
we can pretend to be in a self-organization frame. When wanting to use self-
organization as the internal mechanism of an artificial system, we have to keep
a critical attention on the influence the environment has on the system.

5.3 Using Emergence in Artificial Systems

Our work in this domain during the last decade lead us to give a "technical"
definition of emergence in the context of multi-agent systems, and therefore with
a strong computer science colouration. It is based on three points: what we want
to be emergent, at what condition it is emergent and how we can use it [5].

1. Subject. The goal of a computational system is to realize an adequate
function, judged by a relevant user. It is this function (which may evolve
during time) that has to emerge.

2. Condition. This function is emergent if the coding of the system does not
depend on the knowledge of this function. This coding has to contain the
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mechanisms facilitating the adaptation of the system during its coupling
with the environment, so as to tend toward an adequate function.

3. Method. To change the function the system only has to change the orga-
nization of its components. The mechanisms which allow the changes are
specified by self-organization rules providing autonomous guidance to the
components’ behaviour without any explicit knowledge of the collective func-
tion nor how to reach it.

6 Conclusion

We aimed at studying the feasibility of the concept of Emergent Programming by
using self-organizing instruction-agents. We presented in this paper the concept
and how we studied it. For this, we first described the frame of self-organization
and emergence as we think can be applied in artificial systems. Then we described
a generic approach for adaptive systems based upon a multi-agent system where
the agents are endowed with self-organizing mechanisms based upon cooperation
and emergence.

An elementary example has been used as a case study. Its implementation, and
experimentation with, lead to the definition of the self-organizing mechanisms
of the instruction-agents so as to enable them to make the system reach a given
goal.

This study has been an interesting work to explore self-organization in MAS
when confronted to difficult problems that we are persuaded need an Emergent
solution. We claim that this approach would be really relevant for neo-computation
problems such as ambient intelligence, if not directly with instruction-agents, by
using the same kind of cooperative self-organization mechanisms.
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Abstract. Cooperation is a means for multi-agent systems to function
more efficiently and more adaptively. Cooperation can be viewed as a
local criterion for agents to self-organize and then to perform a more ad-
equate collective function. This paper mainly aims at showing that with
only local rules based on cooperative attitude and without any global
knowledge, a solution is provided by the system and local changes lead
to global reorganization. This paper shows an application of coopera-
tive behaviors to a dynamic distributed timetabling problem, ETTO,
in which the constraint satisfaction is distributed among cooperative
agents. This application has been prototyped and shows positive results
on adaptation, robustness and efficiency of this approach.

1 Introduction

As a consequence of the growing complexity in the number of stakeholders or
in the dynamics of software environments, artificial systems are more and more
difficult to suitably design. The global function of those systems is often fuzzily
specified but parts of the system are easily identifiable and local theories to model
are well known. Such systems, qualified as emergent are studied by biologists and
physicians for some years now. The two main properties of these systems are:
the irreductibility of macro-theories to micro-theories [1] and the self-organizing
mechanisms which are the origin of adaptivity and appearance of new emergent
properties [8].

Kohonen networks or ant algorithms are two relevant examples of artificial
transcriptions of self-organizing mechanisms [9, 3]. When considering less spe-
cific tasks, deciding when to reorganize in order to adapt to the environmental
pressure, for reaching a global goal, needs equipping parts of the system with
cognitive capabilities. Therefore parts become autonomous agents. As a response
to this need of decision-making, the AMAS (Adaptive Multi-Agent Systems) ap-
proach proposes cooperative attitude as the local criterion used by agents to
reorganize. Here, coooperation is not limited to ressource or task sharing, but
is a behavioral guideline. Cooperation is viewed in a proscriptive way: agents
have to locally change their way to interact when they are in non cooperative
situations (or NCS). In AMAS, an agent is cooperative if it verifies the following
meta-rules [5]:
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cper: perceived signals are understood without ambiguity,
cdec: received information is useful for the agent’s reasoning,
cact: reasoning leads to useful actions toward other agents.

If an agent detects it is in a NCS (¬cper ∨¬cdec ∨¬cact), it has to act to come
back to a cooperative state and therefore to change the organization. The func-
tional adequacy theorem [7] ensures that the function of the system is adequate
– the system produces a function which is cooperative1 for its environment –
if every agent has such a cooperative behavior. Therefore, designing adaptive
systems is equivalent to providing agents with a cooperative attitude and then
ensuring the functional adequacy of the system.

The objective of this paper is to show that with only local rules based on coop-
erative attitude and without any global knowledge, a solution is provided by the
system and local changes lead to global reorganization and then to a more adapted
global function. In the next sections, this approach is illustrated by defining a co-
operative behavior for agents having to dynamically solve an academic timetabling
problem. Teachers and students groups have to find partners, time slots and rooms
to give or to take some courses. Each actor has some constraints concerning its
availabilities or required equipment. Moreover, a teacher can add or remove con-
straints at any time during the solving process via an adapted user interface. Such
anapplication clearly needs adaptation and robustness.The systemmust be able to
adapt to environmental disturbances (constraints modifications) and not to com-
pute new solutions at each constraint changing. The correct organization has to
emerge from actors interactions. This problem has been called ETTO, for Emer-
gent TimeTabling Organization. To solve this problem, two kinds of agents have
been identified and are presented in section 2. These agents respect several coop-
eration rules that are expounded in section 3. By now, the goal is not to be the
most efficient, but to provide mechanisms to tackle changes with a minimal im-
pact, as experiments show with results on adaptation and robustness of the AMAS
approach in section 4. Section 5 discusses the approach and compares it to existing
ones before concluding in section 6.

2 ETTO Agents

Two different classes of agents have been identified to tackle the ETTO problem:
Representative Agents (RA) and Booking Agents (BA). The exploration of the so-
lution space, a n-dimensional grid of cells, is delegated to Booking Agents. Each cell
ci of the grid is constrained (time slots, number of places, ...). All the constraints
of a cell are regrouped in a set Cci

. Cooperation between agents must lead to a cor-
rect organization by efficiently exploring the grid. This representation is shown in
figure 1.

2.1 Representative Agents

RAs are the interface between human actors (teachers or student groups) and the
timetabling system. They own constraints (called intrinsic constraints) about
1 Not antinomic and not useless.
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Fig. 1. Agents and environment in ETTO – each actor owns a Representative Agent
and several Booking Agents to search for partners and reservations in the n-dimensional
grid to meet personal constraints

availability, equipment requirements (projectors), or any other kind of personal
constraint. To concurrently explore the possibilities of partnership and room
reservation, those agents delegate exploration to Booking Agents. A RA (called
proxy) creates as many BAs (called delegates) as it has courses to give (for
teachers) or to take (for student groups), and randomly positions them on the
schedule grid at the beginning of the solving. BAs from a same RA are called
brothers. The task of a RA is simple: to warn its delegate BAs when its user
adds or removes constraints and to inform all its delegate BAs when one of its
delegate BAs produces new constraints (called induced constraints), to ensure
coherency.

2.2 Booking Agents

BAs are the real self-organizing agents in ETTO. They have to reserve time slots
and rooms and to find partners (student groups for teachers and vice versa) in
accordance with constraints owned by their proxy.

In a cooperative situation, a BA, which is in a grid cell (i.e. a time slot in a
room for a given day) books it and partners with another BA. But this nominal
situation is not ensured at the beginning since BAs are randomly positioned. BAs
then need to reorganize, i.e. to change their partnership and reservations, to find
an adequate timetable. Such situations are NCS (see section 1). Therefore, BAs
must be able to respond to NCS by respecting cooperation rules (see section 3).

Actions a BA can perform are simple: to partner (or unpartner) with an-
other BA, to book (or unbook) a cell (by marking it with a virtual post-it
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with its address), to move to another cell2, and to send messages to other
agents it knows. A BA only knows its proxy and the BAs it encounters at
runtime.

The life-cycle of a BA is a classical ”perceive-decide-act” process as proposed
by Capera et al [5]:

1. During the perception phase, the BA checks its messages (coming from other
BAs or its proxy) and updates data about the cell (BAs in the cell, post-its,
properties of the cell) in which it is positioned,

2. During the decision phase, the BA must choose the next action to perform
to be as cooperative as possible, in accordance with the cooperation rules,

3. During the action phase, the BA performs the chosen action.

To perform its tasks, a BA bai has the following local properties, capabilities
and knowledge:

– its current position in the grid (cell(bai)), which is the only cell the BA bai

can see since it does not have a global knowledge of the whole grid,
– its current partner (partnership(bai, baj) with i �= j),
– its current reservation of the cell cj (reservation(bai, cj) and rCell(bai)),
– its proxy (proxy(bai)),
– its search time (time(bai)) for a reservation, since it has no more reservation,
– the time slot of a cell (slot(cj)),
– a limited memory of known BAs to send messages to (the set knows(bai)

or the predicate knows(bai, baj)), which is empty at the beginning of the
solving and will be updated during the grid exploration,

– a set of intrinsic constraints (CIbai
) which are attached to the BA at its

creation by its proxy RA,
– a set of constraints induced by its brothers (CBbai

) which are attached to
and updated by its proxy RA when one of its brother reserves a cell to avoid
ubiquity situations (two BAs of the same RA book the same time slot, for
example),

– a set of constraints induced by its partner (CPbai
) which are attached to

each partnership and updated when the partner changes its constraints to
take into account the partner’s preferences,

– a set of constraints induced by its reservation (CRbai
) to avoid partnering

with a BA which is not available at certain time slots,
– the set of constraints from a first set which are non compatible with con-

straints of a second set (nonCompatible(Ci, Cj) ⊆ Ci) to process potential
partners or cells to reserve,

– a function to weight constraints (w(ci) > 0). The higher the weight is, the
more difficult the constraint can be relaxed. A constraint ci cannot be relaxed
if w(ci) = +∞.

2 BAs do not know the whole grid, so moving to another cell implies defining the cells
it knows from it.
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A macro, NC, is defined to simplify notations:

Definition 1. The set of non compatible constraints between two BAs is
NCbai,baj

= nonCompatible(CIbai
∪ CBbai

∪ CRbai
, CIbaj

∪ CBbaj
∪ CRbaj

).

To determine the non compatible constraints between two BAs, the constraints
coming from partners (CP ) are not taken into account. In the same manner, for
determining if a cell is compatible with a BA’s constraints, constraints from the
current reservation (CR) are not included:

Definition 2. The set of non compatible constraints between a BA and a cell is
NCbai,cj

= nonCompatible(CIbai
∪ CBbai

∪ CPbai
, Ccj

).

By using NC, two constraint owners (BA or cell) can know if they are
compatible:

Definition 3. compatible(x, y) ≡ (NCx,y = ∅).

Before starting the solving, there is no absolute way to decide what are the
most difficult sub-problems to solve. Moreover, the difficulty degree could evolve
due to the dynamic evolution of the problem description. Therefore, during
the solving, each agent must be able to evaluate the difficulty it has to find
a partner or a reservation. A BA bai can calculate the cost of a reservation of
a cell cj (rCost(bai, cj)) and the cost of a partnership with another BA baj

(pCost(bai, baj)) as following:

– rCost(bai, cj) = (
∑

c∈NCbai,cj
w(c))/time(bai),

– pCost(bai, baj) =
∑

c∈NCbai,baj
w(c).

Dividing by the time(bai) of search prioritizes the BA which is searching a
cell for a long time. In fact, informally, helping agents having difficulties to find
a position within the organization is cooperative.

2.3 Basic Behavior

BAs have two orthogonal goals: find a partner and find a reservation. The main
resolution algorithm is distributed among BAs and relies on the cooperation
between agents. Solving is the result of dynamic interactions between distributed
entities (BAs). As BAs have to reach two main individual goals, the nominal
behavior they follow can be expressed in terms of the achievement of these
goals, as shown in the algorithm 1.

During the perception phase, the BA checks its mailbox, in which other BAs
can put messages about partnership requests or reservations. If these messages
inform that its goals are reached (partnership and reservation), it moves to its
reserved cell only if this reservation is not too constrained. If the agent has
relaxed some or if it lacks partner or reservation, it will explore the grid to find a
(better) solution and analyze encountered BAs in memory and known cells, i.e.
it verifies whether encountered BAs or cells better fit its constraints. Exploring
the grid implies the capability for the agent to choose a next cell to explore. In
the next experimentation, this is randomly done.
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Algorithm 1. Basic behavior for a BookingAgent
while alive do

processMessages()
if partner AND reservation then //reservation is optimal
if rCost(bai,rCell(bai)) == 0 then
moveTo(reservedCell)

else //analyze cell to find either partner or reservation
processCurrentCell()

endif
else
moveTo(nextCell); //choose another cell to explore
addBAsToMemory(); //memorize BAs which are in the cell
processEncounteredBAs(); //verify whether they fit with constraints
if NOT (reservation OR partner) then //goals not reached
processCurrentCell() //analyze the current cell

endif
endif

done

2.4 Constraint Management and Related Works

Actions may lead to add new induced constraints. For example, a BA which
books a cell corresponding to a given hour at a given day warns its brothers,
via its proxy, that this time slot is forbidden to avoid ubiquity situations. Con-
versely, if a BA unbooks a cell, it must inform its brothers. Therefore, a BA
must process two kinds of constraints: intrinsic ones, which come from the actor
its proxy RA represents, and induced ones, that come from its brother BAs. Of
course, some problems may not have any solution without constraint relaxation.
As a consequence, BAs must be able to affect priorities and weights to con-
straints as in fuzzy CSP or weighted CSP [2]. But, contrary to classical dynamic
CSP [6], memory of previous states is sprayed within all the BAs which could
be distributed within several servers. Finally, contrary to all these approaches,
BAs only reason on a limited number of known BAs to find a good solution as in
distributed CSP [16] or more accurately in distributed constraint optimization
problems (DCOP) [12] that aim at optimizing (minimizing) the sum of relaxed
constraints. Since BAs are agents, they do not have any global knowledge. There-
fore, constraint optimization is shared by BAs, and the solution emerges from
their local peer-to-peer interactions.

Nevertheless, our approach remains different from above-mentioned ones, be-
cause the main objective is not to provide an algorithm that is sound, complete,
and terminates, but to define local and robust mechanisms, able to implement a
global solving. Similarly to applications of ant algorithms on scheduling problems
[15], BAs alter their environment (the grid) with markers to indicate the cells
they book and to constrain the other agents. The main difference with the usage
of pheromone is the way the markers disappear. In the ant approach, markers
evaporate with time. In our algorithm, markers are removed consequently to ne-
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gotiation between BAs in booking conflict (see section 3.4). Finally, this work is
close to local search based CSP approaches such as [11], but by using the agent
paradigm to encapsulate constraints.

3 Cooperative Self-organization Rules

The solving algorithm we propose is distributed among BAs and resides in coop-
erative self-organization. As said in the previous section, a nominal behavior of an
agent is not sufficient to lead the collective to an adequate organization. BAs have
to respect some cooperation rules to reach a correct global state (a pareto-optimal
solution). Designing cooperative agents is then equivalent to implementing the co-
operation meta-rules (see section 1). Five different situations for reorganization
are identified. The two firsts do not respect the cdec meta-rule of AMAS. The three
next ones do not respect cact. In this example, there is no cper violation because all
BA agents are identical and can understand each other.

The idea is to design these rules as exceptions in classical object programming,
at the agent level and not at the instruction level. This concept really fits with
the proscriptive approach proposed by [5]. As for exceptions, designers have to
specify the condition of the exception throwing and the action to perform in the
exception case. The following cooperation rules are then presented as condition-
action pairs. Conditions are not exclusive. Nevertheless, a policy must be defined
in the case of multiple NCS: from cdec to cact, for example.

3.1 Partnership Incompetence (¬cdec)

One of the goals a BA has to reach is to find a partner. If a BA bai encoun-
ters, in a cell, another BA baj it cannot partner with; bai is, using the AMAS
terminology, incompetent [5]. For example, a BA representing a teacher’s course
meets another BA representing another teacher’s course. As the only entity able
to detect this partnership incompetence is the agent itself, this latter is the
only one which changes the state of the organization by changing its position to
encounter other more relevant BAs. Moreover, to enable a more efficient explo-
ration of partnership possibilities, bai will memorize the location and the BAs
known by baj for exchanging them during further encounters.

This cooperative self-organization rule can be summed up in the following table:

Name: Partnership Incompetence (for agent bai)

Condition:
∃j(j �= i ∧ knows(bai, baj) ∧ (¬compatible(bai, baj) ∨ (pCost(bai, baj) ≥
pCost(bai, partnership(bai)))))

Action: memorize(bai,knows(baj));move

The pCost comparison allows bai to decide if the potential new partner baj

is less constraining than the current one.
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3.2 Reservation Incompetence (¬cdec)

In the same manner than partnership incompetence, BAs must be able to change
organization when their reservations are not relevant. This reservation incompe-
tence NCS occurs when a BA bai occupies a cell which constraints do not fit its
own constraints. For example, a BA representing a teacher’s course is in a cell
representing a room with not enough seats for this course. Then bai must move
to explore the reservation possibility space.

Name: Reservation Incompetence (for agent bai)

Condition: ¬compatible(bai, cell(bai)) ∨ (rCost(bai, cell(bai)) ≥
rCost(bai, reservation(bai)))

Action: memorize(bai,cell(bai));move

To improve the exploration of the grid, a BA memorizes the cells in which
this NCS occurs to share it during negotiation or to avoid it when moving, like
in a tabu search for example.

3.3 Partnership Conflict (¬cact)

Situations during which a BA wants to partner with another partnered BA may
append. The agent must react to this partnership conflict by partnering or by
moving. In this case, the cooperation is directly embedded within the resolution
action: the partnership will be performed with the agent that has more difficulties
to find partners (by comparing the pCost).

Name: Partnership Conflict (for Agent bai)

Condition: ∃j∃k(j �= i ∧ i �=
k ∧ knows(bai, baj) ∧ compatible(bai, baj) ∧ partnership(baj) = bak)

Action:

if (pCost(bai,baj) < pCost(bai,partnership(bai)))
then partner(bai,baj)
else move

When it partners, a BA must inform its previous partner and its proxy. Since
this algorithm is distributed, the partner(bai,baj) action must be atomic (in
the sense of critical section access), but is composed of the following instructions:

unpartner(bai,partnership(bai));
setPartner(bai,baj);
inform(partnership(bai));
inform(proxy(bai))
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3.4 Reservation Conflict (¬cact)

As for partnership, reservation may lead to conflict: a BA wants to reserve an
already booked cell. A reservation conflict can be specified as follows:

Name: Reservation Conflict (for Agent bai)

Condition: ∃j(j �= i ∧ (reservation(baj , cell(bai)) ∨
∃k(reservation(baj , ck) ∧ slot(cell(bai)) = slot(ck) ∧ proxy(bai) =
proxy(baj))) ∧ compatible(bai, cell(bai))

Action:

if (rCost(bai,cell(bai)) < rCost(bai,reservation(bai)))
then book(bai,cell(bai))
else move

When it books a cell, a BA must warn its previous partner and its proxy to
inform not to book in the same time slot. Similarly to the partner action, the
atomic book(bai,cell(bai)) action is composed:

unbook(bai,reservation(bai));
setBook(bai,cell(bai));
inform(partnership(bai));
inform(proxy(bai))

3.5 Reservation Uselessness (¬cact)

In the case a BA is in the same cell than one of its brothers, reservation is useless.
Therefore it can leave the cell without analyzing it, and its occupants, to find
another more relevant one.

Name: Reservation Uselessness (for agent bai)

Condition: cell(bai) = cell(partnership(bai))

Action: processEncounteredBAs();move

Processing encountered BAs corresponds to verifying, in a limited memory list
of BAs the agent has already encountered or another agent has shared during
a negotiation, whether the agents can find a relevant partner with a minimum
partnership cost.

4 Prototyping and Experiments

To validate the algorithm we propose, an ETTO prototype were developed and
several tests carried out to underline the influence of cardinality, the benefit for
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dynamic problem resolution and the robustness. Experiments are based on a
French benchmark for the timetabling problem3. This requirements set is de-
composed into four variants from simple problem solving without constraint
relaxation to system openness by adding or removing agents and constraints at
run time. For each of them, we proposed a solution – not unique in many cases.

4.1 Influence of Cardinality

Cooperation is a collective glue to enhance collective interactions. Therefore, it re-
ally becomes a relevant self-organization criterion in systems with a high cardinal-
ity. Figure 2 shows the evolution of solving time as a consequence of the growing
number of BAs in the system. For these experiments, we keep the same exploration
space size by increasing the number of cells in the grid proportionally to the num-
ber of agents. Only availability constraints are owned by teachers: one time slot per
day is forbidden.Once themaximumreached (average 8BAs), the number of cycles
(during which every agent acts one time) decreases as the number of BAs increases.
The time that varies the less is the real time. Therefore, it is the more relevant in-
dicator of the solving time evolution. Beyond 32 BAs, it has a logarithmic curve.
More BAs the system has, more efficient the solving is – if a solution exists.
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Fig. 2. Variation of solving time in terms of the number of BAs

4.2 Constraint Relaxation

In these experiments, agents must relax constraints to find a solution.
Figure 3 shows the efficiency of ETTO solving, for a variant with 36 BAs requir-
ing constraint relaxation. Reservations are set later than partnerships. ETTO
found a solution with a constraint cost of 10 in 265 cycles. This cost represents
the sum of all the constraints BAs had to relax, i.e. the sum of the weights of
3 http://www-poleia.lip6.fr/~guessoum/asa/BenchEmploi.pdf
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Fig. 3. Global constraint (at top) and partnership (at bottom) variations at run time
for a solution requiring constraint relaxation

relaxed constraints. Nevertheless, the current prototype does not manage the
cooperative slot sharing during negotiation and therefore, when a BA moves, it
randomly chooses the next cell.

4.3 Dynamic Resolution

The two first experiments show the benefit of using cooperation to obtain an effi-
cient timetable solving. A third serie of experiments tests the benefit in terms of ro-
bustness and dynamics. In these experiments, constraints become dynamic. Room
or actors’ availabilities may change at run time. Moreover, some agents can appear
or disappear. By taking into account the chosenmodeling, adding constraints is not
different from adding agents that carry constraints. Figure 4 shows results on an
experiment with initially 36 BAs. At cycle 364 – at the stabilization of the system
– 8 BAs were removed, increasing the cost of relaxing constraints since each agent
cannot find a relevant partner. 20 cycles later, 8 new agents with adequate con-
straints are plunged into the grid. The system only runs 7 cycles (from 384 to 391)
to find an adequate organization with a null constraint cost.
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with a removing of 8 agents after the system stabilization

5 Discussion

University timetabling problems in the real world are dynamic problems.
Restarting from scratch each time a constraint is modified (added, removed)
would not be efficient and some works are interested in this problem. Usually,
the main objective is to have the smallest impact possible on the current so-
lution as in [13] in which this is done by introducing a new search algorithm
that limits the number of additional perturbations. In [4], explanations are used
as well to handle dynamic problems, especially, new operators are given to re-
propagate once a constraint removed and its past effects undone. In ETTO, as
soon as a constraint is added or removed for an agent, this latter questions its
reservations and its possible partnership; if it judges that they are inconsistent
with its new state, it tries to find new ones by roaming the grid and applying
its usual behaviour. If a new agent is added, it immediately begins searching for
a partnership and if it is removed, then all its reservations and constraints are
deleted from the system and its possible partner warned.
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The main feature of ETTO is that modifications are then done without stop-
ping the search for a solution while this latter is in progress, unexpected events
are processed while actors are changing their constraints. Furthermore, this abil-
ity to insert agents has enabled us to show that adding supernumerary agents
helps finding a solution and gives better results. This can be explained by the
fact that the added agents can disrupt others which are satisfied with a solution
that could be optimized. The main difference between our approach and the
DCOP one [12], which considers the distributed optimization of the constraint
cost, is the fact that the set of agents (BAs and RAs) are not totally ordered.
RAs send constraints only to their child BAs and BAs send update data to only
their father RA.

But ETTO has also weaknesses. For example, processing over-constrained
problems is not fully efficient because even if agents have found a solution, they
continue to explore the grid to find more relevant solutions. As agents have a
limited view of the environment, they cannot take into account the global con-
straint cost to stop the exploration. To use ETTO, we consider it exists an oracle
(a human manager) who will halt the solving process when the organization fits
his requirements – a constraint minimum level, for example. The search for a cell
in the grid is not efficient either because it is randomly made by an agent. For
the time being, we were not interested by efficiency, we just wanted to show that
our approach by self-organization is feasible and can produce positive results as
it has been shown. The main positive result is that nothing in the behavior of
agents makes assumption on how the solution timetable is obtained. This so-
lution solely emerges from their local interactions. Nevertheless, a future step
would be to enhance this search by adding a limited memory to agents con-
cerning, for instance, the cells they visited in the past. We will also try other
self-organizing mechanisms like the T-Man approach, which has been presented
in the ESOA’05 Workshop [10].

Two problems are generally considered in most of the CSP approaches: a
search problem in which a timetable that satisfies all the (hard/soft) constraints
is first found and, then, an optimization problem which consists in minimizing
an objective function that takes soft constraints into account. As the solving in
ETTO is distributed among the agents, a global view of the solution does not ex-
ist and giving a global objective function is not possible. Therefore, optimization
problems cannot be tackled in a global way. But, cooperation seems a relevant
criterion anyway. In fact, we had applied this approach to more simple CSP (N
queens, N2/2 knights, etc) for which cooperation quickly provides solutions if
they exist. In problems with no solution, systems quickly reach stable states with
minimal constraint violation [14].

6 Conclusion

We think that the inherent distributed aspect of the timetabling problem ex-
plains a processing by a MAS. We proposed then a solution based on adaptive
multi-agent systems in which cooperation is a local criterion for agents to change
their interactions with others and to make the global, a priori unknown, func-
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tion emerge from these interactions. This kind of programming can be efficient
enough to solve problems that are complex, not well or incompletely specified
and for which the designer does not possess a predefined algorithm. This is shown
by the preliminary results obtained by ETTO as well as other previous works
done in the solving problem domain.

We chose a rather simple example to apply ETTO, one perspective is to apply
it to a more realistic timetabling problem or to a benchmark such as the one
given by the Metaheuritics Network4. This will allow us to compare our results
with other approaches such as genetic algorithms or simulated annealing.
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Abstract. Increasing complexity of software applications forces researchers to
look for automated ways of programming and adapting these systems. Self-adap-
ting, self-organising software system is one of the possible ways to tackle and
manage higher complexity. A set of small independent problem solvers, work-
ing together in a dynamic environment, solving multiple tasks, and dynamically
adapting to changing requirements is one way of achieving true self-adaptation in
software systems. Our work presents a dynamic multi-task environment and ex-
periments with a self-adapting software system. The Evolvable Virtual Machine
(EVM) architecture is a model for building complex hierarchically organised soft-
ware systems. The intrinsic properties of EVM allow the independent programs
to evolve into higher levels of complexity, in a way analogous to multi-level, or
hierarchical evolutionary processes. The EVM is designed to evolve structures of
self-maintaining, self-adapting ensembles, that are open-ended and hierarchically
organised. This article discusses the EVM architecture together with different sta-
tistical exploration methods that can be used with it. Based on experimental results,
certain behaviours that exhibit self-adaptation in the EVM system are discussed.

1 Introduction

Existing evolutionary computation techniques, such as genetic programming (GP) [3],
linear genetic algorithms (GAs) [13], and others [2], have proved to be successful in a
broad range of optimisation problems and applications. These methods, however, are
operating on a predefined, fixed fitness landscape and therefore are very difficult or
even impossible to be used in multi-task dynamical environments. In this article we
propose a new model of evolutionary computation that can be used in highly dynamic
environments. Moreover, our model can be used with traditional linear GA evolutionary
learning, with random search, and with many other stochastic search methods. Our
framework consists of a set of independent computing cells that compete for limited
resources. These computing cells are able to dynamically change their functionality
and functional dependency to meet changes in their environment. They form a web
of interacting computational agents that exhibit self-organisation and self-adaptability
without direct user interaction.
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2 Computation and Biological Inspirations

Current research in EC emphasises information-centric methods that are inspired by
Darwinian theory of random mutations and natural selection. This is visible in well-
established computational optimisation methods, such as genetic algorithms (GA), ge-
netic programming (GP), and their variations, such as assorted artificial life systems.
Despite some successes, the typical simple single-layer evolutionary systems based on
random mutation and selection have been shown to be insufficient (in principle) to pro-
duce an open-ended evolutionary process with potential multiple levels of genetic ma-
terial translation [1, 17].

The Evolvable Virtual Machine architecture (EVM) is a novel model for building
complex hierarchically organised software systems. In this article we describe how the
original abstract EVM model [9] has been extended by the elements of symbiogenesis,
that allow independent computing elements to engage in symbiotic relationships.

From the biological perspective, the abstract EVM model is primarily based on Dar-
win’s principle of natural selection, which is widely used in current computational mod-
els of evolutionary systems for optimisation or simulation purposes, and in evolutionary
computation (EC) in general. Some authors regard natural selection as axiomatic, but
this assumption is not necessary. Natural selection is simply a consequence of the prop-
erties of population dynamics subjected to specified external constraints [1].

Our work proposes an evolutionary model inspired by the theory of hypercycles
[1], autopoiesis [7], and symbiogenesis [8]. A system which connects autocatalytic or
self-replicative units through a cyclic linkage is called a hypercycle. Compared with a
simple autocatalyst or a self-replicative unit (which we can consider here to be a “flat”
structure) a hypercycle is self-reproductive to a higher degree. This is because each of
the intermediaries can itself be an autocatalytic cycle.

The EVM system consists of an interconnected network of processing units (cells
or agents) that can only interact with their neighbours. These processing units are au-
tonomous, they do not have pre-assigned functions, can specialise in different tasks and
can utilise the processing structures of their neighbours. Initially, each single processing
unit potentially benefits from Universal Turing Machine (UTM) equivalent computing
capabilities. In time, some of the cells can specialise in tasks requiring different (lower)
computing power, i.e. specialisation of the virtual machines occurs. On the other hand,
each processing unit can make use of other processing units, via a symbiosis-like rela-
tionship, thus creating a web of interconnected machines.

2.1 Symbiogenesis and Specialisation

Proponents of symbiogenesis argue that symbiosis is a primary source of biological
variation, and that acquisition and accumulation of random mutations alone are not suf-
ficient to develop high levels of complexity [5, 6]. K. Mereschkowsky [8] and I. Wallin
[14] were the first to propose that independent organisms merge (spontaneously) to
form composites (new cell organelles, new organs, species, etc). For example, impor-
tant organelles, such as plastid or mitochondria, are thought to have evolved from an
endosymbiosis between a Gram-negative bacterium and a pre-eukaryotic cell.
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Another (less speculative) phenomenon that occurs at all levels of biological organi-
sation from molecules to populations, is specialisation. It is the process of setting apart
a particular sub-system (reducing its complexity) for the purpose of better performance
and/or efficiency of a particular function. Our working hypothesis is that specialisation,
together with symbiosis, is necessary to reach higher complexity levels.

Some recent work in incremental reinforcement learning methods also advocate the
retention of learnt structures (or learnt information) [10]. The sub-structures developed
or acquired during the course of the program self-improvement process are retained in
the program data-structures. It is therefore surprising that this general procedure has
not been exhibited by any of the (standard) evolutionary programming models, such
as GP or GAs [13]. Although these evolutionary programming models are inspired by
biological evolution, they do not share some significant aspects that are recognised in
current evolutionary biology, neither can they be used (directly) in an incremental self-
improvement fashion1.

2.2 Abstract Self-organising Application Architecture

Simplified, the model presented here can be depicted schematically as in Figure 1, with
inputs and outputs connected to the external environment. The environment consists of a
set of current tasks to be solved, with an appropriate resource pool associated with each
task. The environment also keeps track (via the tasks) of the current resource utilisation
for each given task. The user can dynamically plug-in new tasks, and remove existing
ones, at will. In Figure 1 the resource marked as R1, is utilised by 5 computational cells
(cells with same gray hue on the grid). Similarly, the other two resources R2 and R3 are
utilised by cells indicated by other matched shading types.

Fig. 1. EVM system from an end user point of view

3 EVM Assembly

The programming language used for search in EC plays an important role. Some lan-
guages are particularly suited for some, but not for all, problems. An appealing aspect

1 GA and GP maintain some developed substructures during the course of evolution towards
a particular solution, however, as soon as the equilibrium is reached, or the optimal solution
found, all the intermediate substructures are quickly “forgotten”. When trying to learn a new
task, the search process must start from scratch again, and the common practice in the applica-
tion of GA/GP is to restart the search from a random population. In contrast, self-improvement
in multitask environment never restarts the search from a random population for new tasks. The
idea is to maintain and reuse previously evolved structures.
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Fig. 2. Schematic representation of two-level machine execution. The execution frame is execut-
ing the 5th instruction of program P , that calls program 3 of machine M1. The first instruction of
the 3rd program of M1 is the primitive instruction swap that will swap the two topmost elements
of the data stack.

of a multi-level search process is that, in principle, it is possible to specify a new base
level and a new programming language that is specialised for a given task at that level.
We want the EVM to exploit this property.

In our work we deal with programs capable of universal computation (e.g. with loops,
recursion, etc.). In other words, the virtual machine running our programs must be Uni-
versal Turing-machine equivalent.

None of the existing languages used in EC provides mechanisms to manipulate ma-
chine levels – a property needed for our EVM implementation. There are other features
we would like the base machine language to possess that none of the existing languages
have. For example, it is desirable that a language be capable of redefining itself. Thus the
primitive instruction set must allow the evolutionary process to restructure and redefine
that set. We would also like to have a programming language that is highly expressive,
that is, we want solution programs to typically encountered tasks to be expressible in
compact form. Moreover, we believe that there are efficiency and expressibility advan-
tages for a language with solution spaces that are highly recursive.

Some existing languages possess some of these desired properties, but no single one
possesses all of them. For this reason we have designed our own specialised program-
ming language, called the EVM assembly. The principal objective of this programming
language is to facilitate searches for languages specialised for a given set of problems.

4 EVM Implementation

Our current implementation of the EVM architecture is based on a stack-machine, such
as Forth, or the Java Virtual Machine (JVM). In fact, with small differences, it is com-
parable to an integer-based subset of the JVM. The implementation is written entirely
in Java, and developers can obtain it from CVS 2.

2 http://www.sf.net/projects/cirrus
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The basic data unit for processing in our current implementation is a 32-bit signed
integer. The basic input/output and argument-passing capabilities are provided by the
operand stack, called here the data stack, or for short the stack. The data stack is a normal
integer stack, just as in a JVM for example. All the operands for all the instructions
are passed via the stack. The only exception is the instruction push, which takes its
operand from the program itself. Unlike the JVM, our virtual machine does not provide
any operations for creating and manipulating arrays. Instead, EVM facilitates operations
on lists. There is a special stack, called the list stack for storing integer-based lists.

Execution frames are managed in a similar way to the JVM, via a special execution
frames stack. There is a lower-level machine handle attached to each of the execution
frames. This is a list of lists, where each individual list represents an implementation
of a single instruction for the given machine. In other words, the machine is a list of
lists of instructions, each of which implements a given machine instruction. Of course,
if the given instruction is not one of the Base Machine units (primitive instructions for
that machine), the sequence must be executed on another lower-level machine. The Base
Machine implements all the primitive instructions that are not reified further into more
primitive units.

Potentially, EVM programs can run indefinitely and therefore each thread of exe-
cution has an instruction time limit to constrain the time of each program in a multi-
EVM environment. Each execution thread (a single program) has a maximum number
of primitive instructions that it can execute. Once the limit is reached, the program
unconditionally halts.

The EVM offers unrestricted reflection and reification mechanisms. The computing
model is relatively fixed at the lowest-level, but it does provide the user with multiple
computing architectures to choose from. The model allows the programs to reify the
virtual machine on the lowest level. For example, programs are free to modify, add, and
remove instructions from or to the lowest level virtual machine. Also, programs can
construct higher-level machines and execute themselves on these newly created levels.
In addition, a running program can switch the context of the machine, to execute some
commands on the lower-level, or on the higher-level machine. All together it provides
near limitless flexibility and capabilities for reifying EVMexecution.

4.1 Extensions

One possible way of extending current EVM implementation is by adopting bias-
optimal search primitives [4], or the incremental search methods [11]. To narrow the
search, one can combine several methods, for example it is possible to construct a gen-
erator of problem solver generators, and employ multiple meta-learning strategies. A
more detailed description of the abstract EVM architecture is given elswhere [9].

5 Specialisation of an Individual Machine

Given an initial set of instructions I , the specialisation mechanism will aim to find pro-
grams from I∗ (the set of all possible sequences of instructions) that solve tasks defined
by the environment. We have tried, independently, three different search methods for
our EVM model: 1) random search; 2) GA with variable lengths of chromosomes; and
3) stochastic search based on a probability distribution of individual instructions.
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Fig. 3. Grid configuration for experiments 1, 2, and 3 respectively (the actual size of the grid is
100x100 instead of 7x7). Dark cells contain rewards.

For preliminary testing of these different search methods we used programs that
control an agent moving on a two-dimensional discrete grid. The cells on the grid may
contain rewards. Grids for experiments 1, 2, and 3 are depicted in Figure 3. In exper-
iments 1 and 2 the rewards are persistent on the grid. In experiment 3, the agent can
obtain each reward only once from a given cell (i.e. volatile rewards). This constraint
has been added to force the agent to follow a path. The initial position of the agent is
always the top left corner. Execution time is limited to 100 time steps for the first two
experiments. This means, the ideal program for experiment 1 would be 100 instructions
long, and will collect 100 reward units. For experiment 2, the perfect program would
be again 100 instructions long, and would collect 99 reward units. Note, that there is
a trade-off between the total number of rewards and the length of the program. For a
program of length 6 that utilizes loop, the total number of rewards for experiment 2 is
66. For third experiment the time limit is set to 12 time steps and the total number of
possible reward units collected is 12. The base instruction set has been extended with 4
special instructions: down, up, right, and left to move the agent on the grid.

5.1 Specialisation with the Use of Random Search

Random search is the simplest mechanism to specialise a machine. For each single cell
it generates random programs. If one of the programs is successful, it will stay; and if it
is not successful, then a new program will be randomly generated and tested3. On one
hand, random search cannot take advantage of regularities in the fitness landscape. But
on the other hand, it has no parameters, is fast, and needs very little memory.

For arithmetical problems, the landscape basically consists of one big peak with a
steep slope (rewards are either all or nothing). In such circumstances, random search is
appropriate and performs quite well when compared with other methods. Moreover, by
implementing the simplest possible search mechanism for every cell, it is possible to
focus on macroscopic behavioural patterns, i.e. how cells interact to compute a complex
solution.

3 In our implementation this is implemented by the following algorithm. First step: create a ma-
chine with a randomly selected program. On request return that program, and if that program
received a reward, freeze it, i.e. always return the same program to the evaluator. If the program
solves a task, it will be rewarded and its cumulative rewards will be higher than zero. If the pro-
gram does not solves the task, subtract a fixed amount from the cumulative rewards. Return the
same frozen program for each request, until the frozen program cumulative rewards are zero, and
the program is starving. Then, go back to the first step, and create different random program.
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In the general case, though, most problems (like the maze experiments) display reg-
ularities in the fitness landscape. For that reason, we seek more complex search mech-
anisms that can take advantage of these regularities.

5.2 Specialisation with the Use of Genetic Algorihtms

For our implementation of the genetic algorithm (GA) module, chromosomes are rep-
resented as lists of integers. There is an extra mutation operator that inserts or deletes
individual instructions into the program, and for all the experimental runs the probabil-
ities of addition and removal were set to the same rate. The initial size of the program,
as well as all the other mutation and crossover probabilities, varied, so it was possible to
hand-tune the parameters for a given problem to achieve satisfactory GA performance.
For experiment 1 we used a population size of 1000 and up to 2000 generations, with
the probability of crossover set at 0.8 and the mutation rate set at 0.01 (the add/remove
probability was set at 0.05). The GA-based search did not have any trouble finding
suboptimal solutions that utilize loops, but it was unable to find a global optimum.

Trade-off between exploration and exploitation. The main drawback of the GA-based
search was that it does not dynamically adapt to different exploration strategies for dif-
ferent environments. Exploration in GAs is basically performed by the mutation opera-
tion. For example, in experiment 2, often a single run of GA-based search was unable to
find any rewarded sequence for 3000 generations with 1000 individuals. Thus, the suc-
cess of the GA run depended purely on the initial randomly generated population. If it
was initialized without any good building blocks, the population was unable to discover
any useful subsequence purely by mutations alone4.

Converging to suboptimal solutions. The GA-based search always prefers shorter solu-
tions to the longer ones, because shorter ones are statistically more stable. The heavy use
of loops prevents GA-based search from finding global optima (apart from experiment
3, where GA-based search in half of the runs was able to find the global solution).

Stable prefix and bloat of introns at the tail. GA-based search generated solutions that
are characterized by a relatively stable prefix, and a very long chaotic tail of introns.
Introns are simply instructions that are either not executed at all, or, when executed do
not have any negative or positive side-effects for the program. Again, exploration of
the program space tends to concentrate on the end of the program structure. The closer
to the beginning, the more stable the instruction become. This is very similar to the
“freezing” mechanism discussed in the next section in regard to stochastic search.

5.3 Specialisation with the Use of Stochastic Search

For the stochastic search we assumed that the number of instructions per program, and
the number of programs per machine were limited. The basic idea is that by limiting
the size of the machine we can assign a probability distribution to each instruction of
the machine M . For each instruction of M , there is a probability distribution over its
possible values (Figure 4).

4 The probability of such an event is around 0.0000000164: there are 78 instructions in total,
and the minimal length of a rewarded program is 2.
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Fig. 4. Every instruction of a machine M contains a probability distribution over its possible
values

To evaluate a machine, specific values are randomly picked representing the instruc-
tions of M according to their probability distributions. The result is an instance m of M ,
which will be used in an attempt to solve a problem. Programs of m will then be exe-
cuted until a solution is found. Depending on their success, probabilities of programs of
m will be increased or decreased. Every time a reward r is gained with a program p, the
probabilities of p’s instructions are increased. On the other hand, if p was not successful
(implying no reward), the probabilities of its instructions were decreased slightly.

In addition to finding the solution to a particular problem, this mechanism is aimed
at remembering solutions. The intent is to store these solutions in the machine’s list of
programs. For instance, a machine M can specialise in solving arithmetical operations.
The environment provides several arithmetical problems. M will more or less randomly
explore the space of possible programs until it starts finding the first solutions. Then by
solving the same tasks again and again, probabilities will increase, and solutions will
progressively be stored in M ’s programs.

Correlation between instructions. The primary drawback of the stochastic approach
(and to a certain extent GAs, as well) is that it does not take into account correlations
between instructions. The program’s measure of quality highly depends on all its in-
structions taken together. Changing one of them may disrupt the entire program and
penalize the other instructions, even if these are likely to be beneficial. Storing condi-
tional probabilities might be a potential solution to that problem. Ideally, we could store
successful subprograms’ patterns of any length in a probability tree. It would then be
equivalent to a Markov-chain based stochastic search. Experiments are currently being
performed to evaluate this approach.

Freezing mechanism. Since instructions are randomly selected according to their proba-
bility distributions, there is always a probability of not selecting an important instruction
i. To be sure i is in the program, the search mechanism tends to increase its probability
in consecutive placeholders as well. Therefore, the search wound up confined to local
optima such as

right down right down down right down (3 reward units)

for experiments 1 and 2. This is especially disappointing, because during the evolu-
tionary process, the search mechanism does find some good solutions (up to 66 reward
units in the 2nd experiment) but fails to remember them. The search process can be
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enhanced by introducing a freezing mechanism that will progressively ”freeze” values
in a program’s instructions according to the following quasi-algorithm:

1. Assign n ← 1 (start from the first instruction)
2. If the probability of the n-th instruction has been almost maximal (within prede-

fined threshold) for the number of iterations (another predefined constant), set the
probability to 1 and don’t modify it anymore (freeze it). Set n ← n + 1

3. Reset all the probabilities of the tail of the program, i.e. for all the instructions n+1
and above.

4. n ← n + 1 and return to step 2 until the entire program has been frozen.

The freezing mechanism has proved to be highly effective in many different problems
we have tried, and it has always outperformed the stochastic search without freezing. In
experiments 1 and 2, indeed, the search converges to solutions containing a loop, either
with 2 or 4 agent movements instructions inside it (the more movement instructions, the
higher the total reward). For instance, the second experiment produces these solutions:

down right right left const 2 goto (50 reward units)
down right right down left up const 2 goto (66 reward units)

The first program moves the agent: down, right, right, then left. After that sequence,
a value of 2 is placed on top of the stack (instruction const 2, and instruction goto
moves back to the third instruction in the program (right). The sequence of agent
movements: right, left is executed indefinitely in the loop.

Long programs. Even with the help of the freezing mechanism, it becomes very dif-
ficult to build up longer programs, especially when a shorter (yet less rewarded) one
is possible. The third experiment demonstrates this. Instead of finding the better 12-
instructions-long program, all of our search methods are more likely to attempt to
find a pattern to insert in a loop, e.g.: right down right down down const 0
goto (7 reward units). Since this program is shorter, it is more likely to be picked.
It gets smaller rewards than the best solution, but it gets them more often, and for this
reason it dominates. Again, this issue may be corrected by a probability tree.

6 Experiments with a Web of Interacting Agents

Suppose that several machines lie on an n-dimensional grid (all executed asynchr-
onously). In addition to primitive instructions (like add, swap,. . . ), a machine can
also access its neighbours’ programs. There is no specific constraint on the grid’s topol-
ogy. It can be n-dimensional, and the neighbourhood can be as big as desired. In the
extreme case, we could imagine a grid or web in which every machine can access every
other machine. So far we have run experiments with two-dimensional grids with four
neighbours, but other experiments with different topologies are planned to investigate
further the impact of neighbourhood relation and locality. A program now can look like
the following: add dup program2ofLeftNeighbour mul program1ofRightNeighbour.

Moreover, if a program gets a reward, it will share it with any neighbour’s program
used to compute the solution. Both of them will benefit from their relationship. In other
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Fig. 5. Typical run exhibiting self assembly. After 5,000 iterations, several machines can solve the
two simple tasks (2x and 3x). After 10,000 iterations, one machine (m1,3) uses its neighbours
to solve the hard task (3x + 2y), and all of the machines share the rewards (symbiosis). Shortly
afterwards, some of its neighbours take advantage of it: they simply solve the task by calling
m1,3 (parasitism). Finally, after 20,000 iterations, we can observe another cluster of solutions at
the bottom of the grid.

words, symbiotic relationships may appear between programs. This ability to access
neighbours’ programs has thus opened the door to complex hierarchical organization.
As a consequence, machines are now able to collaborate to solve complex problems.

Let us consider the following example. On the grid are some machines (agents) spe-
cialised in list manipulation, and some specialised in recursion problems. The task is
now to solve a problem involving both list manipulation and recursion. Cells surrounded
by machines specialising for these two problems have the opportunity to find solutions
to the task by accessing programs of their neighbours. Some machines will specialise
in solving these simpler tasks and might be used by their neighbours to solve a more
difficult task. A simple case, with two simple arithmetic tasks (2x and 3x) and one more
complicated (3x + 2y), is depicted in Figure 5.

This computational model is well-suited for incremental problem solving. If solu-
tions (or some part thereof) to some tasks can be reused to solve more complex ones,
the EVM will take advantage of it. Indeed in such conditions, useful neighbours are
more likely to appear.

6.1 Environment

From a machine learning point of view, the environment consists of a set of tasks to
be solved (multitask learning). For the search process to be efficient, the model should
fulfill the following requirements:

1. All tasks must be solved (eventually).
2. Solving difficult tasks should lead to greater rewards than easy ones.
3. Computational resources (i.e. agents not currently solving any task) should focus

on unsolved tasks.
4. Solutions must not be forgotten, as long as they are useful.
5. Knowledge diffusion across the web of interacting machines should be facilitated.
6. Dynamic environments should be supported: tasks can be added and/or removed at

any time, dynamically.
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From an artificial life point of view, one can view the environment as having to man-
age food resources, that are to be dispatched to the agents trying to consume them.
Every resource represents a task to be solved. Every resource has two attributes: quan-
tity and quality. Values for these attributes specify how much food (reward) will be
given to the cell that consumes from the given resource.

The parameter QUANTITY (capitalized to highlight its static nature) represents
the abundance of resources in the environment. This value is set as an a priori conjecture
by the modeller and is the same for each of the resources. It allows us to tune the amount
of agents that will be able to survive.

The resource’s quality has to reflect how difficult a task is. It facilitates a mechanism
to give more rewards for hard tasks (requirement 2). There are several ways of measur-
ing the difficulty of a task. Some are a priori (using expert knowledge), but it is more
interesting to adjust it dynamically based on the observed difficulty. For example, the
resource’s quality may be set based on the observed average time it takes to solve it, or
on how many agents can solve it, etc. We decided to set the resource’s quality to the
current minimal number of cells required to solve the task. It will reflect dynamically
the task’s complexity without depending on randomness and without the use of extra
parameter that would need to be tuned for the search process.

When a cell consumes a resource, it gets the following amount of food:

food =
QUANTITY quality

consumers
,

where consumers is the number of agents eating the resource. Moreover, a cell has to
share its food with all the neighbours it used to solve the task. Every cell used will get
the same share of food 5.

At every iteration, a cell needs to eat a certain amount of food: FNEEDED. If it eats
more, it can makes provisions by storing it. On the other hand, if it eats less it will die
from starvation once its provisions are empty.

provisiont = provisiont−1 + food − FNEEDED

6.2 Parameters and Their Impact

The two main parameters: the resource’s quantity and the food needed for a cell to
survive can be represented as one parameter DENSITY .

DENSITY =
QUANTITY

FNEEDED SIZE
,

where SIZE is the total number of cells. This simplifies the model, because only the
respective ratio is really important. DENSITY controls the utilisation of the cells on
the web. Figure 6 depicts two different settings for that parameter.

Equilibrum/stability. Another parameter, PROV ISIONMAX , has been added. It sets
a maximal bound for provisions stored by a cell. Its value drastically affects the dy-
namism of the web. If PROV ISIONMAX is high, most of the cells are stable and

5 For these early experiments, we have chosen a very simple reward mechanism. More compli-
cated models will be investigated in our future work.
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Fig. 6. Two different settings for the DENSITY parameter (left: 10%; right: 30%)

Fig. 7. Knowledge diffusion

only a few appear and disappear (scenario A). If PROV ISIONMAX is low, we ob-
serve much more dynamic structural patterns on the web, with cyclic episodes similar
to a kind of catastrophe scenario [12]. Good solutions spontaneously appear in the web,
and after a while there are too many cells competing for the same resource. As a conse-
quence, the quantity of the resource they are consuming decrease below the FNEEDED

threshold. Since they don’t have enough provisions, they will soon almost all disappear.
New cells can then start a new cycle (scenario B).

There seems to be no smooth transition between these two dramatically different
scenarios. Scenario A represents a stable and fixed solid state, similar to Wolfram’s class
1 of cellular automata (CA) classification [15]. Scenario B represents a cyclic state, and
is similar to Wolfram’s CA class 2. Wolfram’s Classes 3 and 4 can be achieved by tuning
the FNEEDED parameter.

Knowledge diffusion. There is another interesting behaviour of interacting machines
that can be observed. When a cell Cs solves a difficult task for the first time, the
solution is almost immediately parasited by its neighbours. That phenomenon (see
Figure 7) enables to diffuse a solution around the successful cell Cs, thus rendering
this solution accessible to an increasing number of agents. Since some agents may need
this solution to compute a more difficult problem, knowledge diffusion is highly de-
sirable. Competition between parasites is very intense. They usually appear, survive a
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couple of iterations, disappear, after a while appear again, and so on. The dynamism
exhibited looks like Cs is trying to reach something in its neighbourhood. For instance,
if the diffusion manages to reach the neighbourhood of a cell C1 that needs it, it will be
used and thus the whole chain of parasites from Cs to C1 will receive a lot of rewards
and survive.

Once some other cells in the web solve the same task as Cs by their own (without
parasiting), it becomes more and more difficult for the parasites of Cs to survive (as they
always have to share their food with the cells they use). As a consequence, knowledge
diffusion will progressively decrease.

7 Film Analysis vs. Quantitative Studies

The study so far was mainly based on running simulations and preparing (off-line) the
2D movies (animation sequences) of the dynamics of the evolving web of cells. Once
the movie has been generated, it has been observed and analysed by the researchers.
Most of the observed phenomena would be very difficult to be discovered by any other
means. Of course, observations performed by the movie technique are very subjective,
and do not represent statistically meaningful results. This is, however, the first step.
Once certain phenomena are identified, then it is possible to prepare experiments and
collect enough statistical data to confirm the initial observations. For the initial inves-
tigations, where some of the phenomena are not really expected or even completely
unknown, the movie technique proved to be very successful.

It is our believe that utilisation of video sequences in this study is a valuable and
essential element. It is one of the ways, if not the only way, to capture complex spatio-
temporal aspects of certain phenomena, that cannot be predicted in advance. This tech-
nique has been used with great success in the field of cellular automata e.g. [16]. For
1D cellular automata the spatio-temporal aspect can be captured by a 2D image of the
evolution of the single line of cells. However, for 2D almost all the studies must be done
with video sequences (on-line or off-line).

8 Summary

An architecture of dynamic hierarchically organised virtual machines as a self-
organising computing model has been presented. It builds on the Turing-machine-based
traditional model of computation. The model provides some of the necessary facilities
for open-ended evolutionary processes in self-organising software systems. The EVM
system exhibits self-adaptation and self-maintenance. The EVM components are au-
tonomous, they are executed asynchronously, they have no assigned specific function
and can interact with the local neighbours. The EVM system exhibits emerging proper-
ties and hierarchical organisation via selection mechanisms, and symbiotic relationships
between components.

The EVM architecture is particularly effective when applied to problems with an in-
herently well-organised structure. The results obtained so far suggest (although much
more extensive experimentation is needed) that it can outperform random search, GA
and Markov-chain based search techniques, for problems that exhibit well organised
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structural patterns, and when the problem search can be split into subspaces that can be
explored independently/incrementally by the EVM web of agents. In general, it appears
to perform as well as a bias-optimal search techniques (and as well as standard GA).
During our experiments, for specific problems, with well-defined incremental subprob-
lems, it outperformed both GAs and stochastic search.

More experimental data needs to be collected, and more formal comparisons with ex-
isting program search techniques is planned for the future. We also plan to investigate
different topological environments, environments with resource locality, and investigat-
ing the influence of introducing mobility of cells, to boost diffusion.

Nevertheless, we believe that this computational mechanism can be successfully ap-
plied to a broad range of tasks, and through its inherent hierarchical organisation, can
prove to be well suited for managing highly complex computational systems. Com-
bined with existing evolutionary search techniques, like GAs, it offers unique ability
of collapsing abstraction levels and managing dynamically interdependencies between
computing agents.
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Abstract. Many peer-to-peer (P2P) applications benefit from node speciali-
sation. For example, the use of supernodes, the semantic clustering of media 
files or the distribution of different computing tasks among nodes. We describe 
simulation experiments with a simple selfish re-wiring protocol (SLAC) that 
can spontaneously self-organise networks into internally specialized groups (or 
“tribes”). Peers within the tribes altruistically pool their specialisms, sharing 
tasks and working altruistically as a team – or “tribe”. This approach is scalable, 
robust and self-organising. These results have implications and applications in 
many disciplines and areas beyond P2P systems. 

1   Introduction 

Open Peer-to-Peer (P2P) networks (in the form of applications on-top of the internet) 
have become very popular for file sharing applications (e.g. Kazaa1, Gnutella2, 
Bittorrent3). However, can such technology be applied to other computing tasks? For 
example consider a system in which some nodes have lots of free storage, some high 
bandwidth and others non-firewalled connections to the network. Those nodes could 
cooperate to provide a data back-up service – something that no individual node could 
provide. Obviously, in such a situation, if there is demand for a back-up service we 
would wish the nodes to, somehow, get together and provide the service – but how? 

One solution (and currently, it would seem, the only viable one for deployable 
applications) is to code the process of specialisation, coordination and cooperation 
into the protocol directly for each different kind required. So for example, where 
semantic clustering of media files is required for file sharing, protocols exist that 
implement it4 [11]. Where systems require supernodes [14], again, these are 
implemented directly. There are two problems with this approach; firstly, for every 
kind of specialisation required a programmer must envisage this a priori, design a 
                                                           
* This work partially supported by the EU within the 6th Framework Programme under contract 

001907 (DELIS). 
1 The Gnutella home page: http://www.gnutella.com 
2 The Kazaa home page: http://www.kazaa.com 
3 The BitTorrent home page: http://www.bittorrent.com. See [3] for a description of the way 

BitTorrent works. 
4 For example see the MLdonkey system: http://mldonkey.org 
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protocol then implement and test it. Secondly, since this process is complex enough 
on its own, it is generally assumed that nodes will follow the protocol – it is rare to 
find protocols robust to node failure, noise or malicious behaviour, such as free 
riding, although this is, to a certain extent, true within the BitTorrent system [3].  

Additionally, it is also rare that nodes can spontaneously change their specialism if 
they come to recognise that they might be able to do better following a different role. 
The specialism of the node tends to be hard-coded or relies on user level switches. 
This kind of approach limits the ability of the system to automatically adapt to 
changing task scenarios – however see [14] in which supernodes are dynamically 
allocated to improve performance. 

Ideally, we would like a more general approach that could be applied to a range of 
different task domains with minimal tuning. We would like the approach to offer 
dynamic specialisation and re-specialisation if nodes come to recognise they could do 
better playing another role and have the ability to do so or if the task domain changes 
requiring different kinds of skills to be combined. In addition, we want the system to 
be able to deal with freeriders and errant or malicious nodes but also to support 
altruistic cooperation between specialists when this is required for job completion. 
Finally, we require this to be as scalable, self-organising and robust as possible. 

In this paper we do not claim to have addressed all these issues to the level of 
deployment, what we propose is, we claim, the beginnings of an approach that may 
allow us to address these issues. In the simulated scenarios so far implemented, our 
results are very encouraging and we plan to continue this line of work. 

In the following sections, we state our assumptions concerning behaviour in open 
peer-to-peer systems then we introduce the SLAC algorithm in general terms. We 
follow by formulating a minimal task domain scenario called the SkillWorld, to which 
we wish to subject a simulated P2P network running SLAC. We then describe how 
we apply SLAC within SkillWorld and present some experiments and results. We 
interpret the results and describe a “typical history” in the SkillWorld. 

At the end of the paper we summarise what we have observed and what it means. 
We claim that the results indicate a process that has possibly profound implications 
and applications beyond just P2P systems. 

2   Behavioural Assumptions in Open Networks 

How do nodes behave in open P2P networks? Of course, the simple answer is, 
assuming nodes are autonomous: anyway they like to behave!  

Given this fact, how then do we proceed to devise protocols that will lead to 
desired system-level functions? Obviously, we have to begin by making assumptions 
about the likely behaviour of other nodes in the network. Such assumptions should be 
as realistic as possible but also simple enough to be practically computable and 
transferable between a number of domains. Assumptions made here are essentially the 
axioms of a kind of mini social theory which then informs the design of peer 
software. 

Many approaches (often unconsciously) inherit assumptions from previous social 
sciences (e.g. economics, socio-biology, sociology). For example, if we assume nodes 
will behave “rationally” in the context of classical game theory, then, we compute 
“Nash equilibrium”  - as some researchers do – we inherit our assumptions from 
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game-theory which is a body of knowledge assuming perfect rationality and perfect 
information. The basic approach is to assume that all individuals have perfect 
knowledge of the game being played and all possible outcomes along with infinite 
computational time and common knowledge that all individuals are the same in these 
respects. Given these assumptions it is sometimes possible to analytically derive the 
“Nash Equilibria” of the game being played. The idea is that given the previous 
classical assumptions any system will find and stay in a Nash Equilbiria. However, it 
is unclear that such assumptions hold in dynamic open P2P networks and the 
derivation of such equilbria within dynamic topologies and changing populations is 
currently beyond state-of-the-art analytical techniques. 

In the context of socio-biological models [13, 18], which are based on the 
evolution of behaviours of interacting animals over time, the assumption is that 
behaviours (or strategies) reproduce in proportion to their average fitness (utility or 
score) such that fitter behaviours become more numerous over time. Additionally 
such models assume that mutation in the form of random changes in behaviour also 
take place. This evolutionary game theory approach allows for an ecology of 
behaviours to evolve over time. In addition, there is no requirement that agents have 
perfect rationality or perfect information – just enough, such that better performing 
strategies tend to increase in the population. For biological systems, this occurs via 
Darwinian evolution where utility equates to fitness. However, P2P networks don’t 
evolve in a Darwinian fashion. Nodes don’t reproduce and it is unclear what “fitness” 
means in this context. 

We have shown in recent work results from evolutionary models can be applied in 
networks if we allow nodes the ability “copy and re-wire” within the network to 
improve their own situation [7, 8]. This latter innovation demonstrates it is possible to 
import work originally modelled in a conventional evolutionary framework into a 
dynamic network model. Nevertheless, in the absence of any deductive proof of the 
equivalence of evolution and the re-wire rules it is necessary to implement and test 
previous mechanisms to determine if the properties of interest can be carried over into 
networks. 

Summary of assumptions concerning open P2P networks: 

1. Nodes are in the network for what they can get out of it 
2. Nodes modify their behaviours to improve their individual benefit 
3. Nodes have limited knowledge about other peers and the network in 

general 

The first assumption would appear to be plausible within open P2P networks. In 
the currently popular file-sharing networks the majority of uses download and run 
peer client software (and hence join the network) in order to get something (e.g. to 
download a movie or a music file). It certainly is true that some people would join for 
other reasons. For example, a user may join to feel “part of an online community” 
[17] or to distribute only their own content - not downloading. Some could aim to 
damage the functionality of the network by distributing malicious content. However, 
we argue that neither of these motivations informs the majority of the nodes. In any 
case, most functions would be enhanced by purely altruistic behaviour (such as 
distributing content without downloading) and we conjecture that there are at least as 
many pure altruistic as pure malicious nodes in working networks. 
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The second assumption is more problematic – who says nodes within a given P2P 
network change behaviours to improve their benefit? Our argument here is rather 
speculative - if not conjectural. We start from the assumption of autonomy and argue 
that the function of peer client software is ultimately under the control of the user. For 
example, users may change operating system or client software settings (e.g. limiting 
upload speeds), download new versions of a peer client (e.g. incorporating ways to 
improve download success and rates) or simply hack their own code if they have the 
required skills. Of course, a hacked client can be distributed to others if it appears to 
have desirable properties and will tend to be adopted if it delivers those properties to 
others. We therefore claim that currently, this kind of process is occurring at the user 
level – via the adoption of various clients and the control of various node-level 
settings. The problem hidden in this assumption is that the space of available 
behaviours that each user can choose from varies over time and is also dependent on 
the knowledge of the user, the kind of network connection, form of operating system 
and many other related factors. However, we note that similar assumptions have 
provided some insight into human socio-cultural phenomena at least as complex as 
the socio-cultural phenomena of P2P systems [2]. 

The third assumption would appear to be a necessary one in any large and highly 
dynamic system – it is not practical or possible to collate accurate global statistics in 
most such systems. 

3   The SLAC Algorithm 

In previous work we showed how a simple “copy and re-wire” rule (or protocol or 
algorithm) could produce high-levels of cooperation within simulated P2P networks 
performing collective tasks. We named this algorithm “SLAC” because it uses Selfish 
Link and behaviour Adaptation to produce Cooperation.  We showed that nodes  in  a  

 
DO periodically forever 
  select a random node j from the network 
  compare utility of this node (i) with node j 
  IF utility of j is higher (Uj >= Ui) 
    drop all current links (clear view of i) 
    copy links of node j (copy view from j to i) 
    add link to j (add to view i a link to j) 
    copy behavioural strategy of j 
    with a low probability (mutation rate 1) 
      drop all current links (clear view of i) 
      add a link to a randomly chosen node 
    with a low probability (mutation rate 2) 
      change the behavioural strategy randomly 
   END IF 
END DO 
 

Fig. 1. The generic SLAC algorithm. Each node executes this algorithm. 



 Choose Your Tribe! - Evolution at the Next Level in a Peer-to-Peer Network 65 

network could emerge cooperation within the single-round Prisoner’s Dilemma (PD) 
game, under, what we argue, are plausible assumptions about the kinds of behaviour 
we find in P2P systems. We also demonstrated that the same results could carry over 
into a more realistic file-sharing P2P task domain [6, 15]. 

The basic algorithm assumes that peer nodes have the freedom to change behaviour 
(i.e. the way they handle and dispatch requests to and from other nodes) and drop and 
make links to nodes they know about. In addition, it is assumed nodes have the ability 
to discover other nodes randomly from the network, compare their performance 
against other nodes  (via a comparison of utilities) and copy the links and (some of) 
the behaviours of other nodes. As discussed above, we assume that nodes will tend to 
use their abilities to selfishly increase their own utility in a greedy and adaptive way 
(i.e. if changing some behaviour or link increases utility then nodes will tend to  
select it).  

In a SLAC network each node stores a neighbour list or “view” which holds the 
links to each neighbour node. Over time, nodes engage in some activity and generate 
some measure of utility U (this might be number of files downloaded or jobs 
processed etc, depending on the domain). 

Periodically, each node (i) compares its performance against another node (j), 
randomly selected from the population. If Ui < Uj then node i drops all current links 
and copies all node j links and adds a link to j itself. Also, periodically, and with low 
probability, each node adapts its behaviour and links in some randomized way using a 
kind of “mutation” operation. Mutation of the links involves removing all existing 
links and replacing them with a single link to a node randomly drawn from the 
network. Mutation of the behaviour involves some form of randomized change - the 
specifics being dictated by the application domain (see later). Obviously for SLAC to 
work we need to be able to choose a suitable node-level measure which we can use to 
represent the utility of the node. Moreover, we assume that nodes can compare these 
utilities – this can cause a number of potential problems and we discuss these in the 
conclusion section of this paper. 

Previous “tag” models, from which SLAC was developed [6-9] have indicated that 
for good scalability properties the rate of mutation applied to the links needs to be 
higher, than that applied to the behaviour, by about one order of magnitude. In the 
context of the algorithm show in figure 1 this means that “mutation rate 1” >> 
“mutation rate 2”. 

When applied in a suitably large population, over time, the algorithm follows a 
kind of evolutionary process in which nodes with high utility tend to replace nodes 
with low utility with nodes periodically changing behaviour and moving in the 
network. However, as will be seen, this does not lead to the dominance of selfish 
behaviour, as might be intuitively expected, because a form of incentive mechanism 
emerges via a kind of ostracism in the network. The process can also be viewed as a 
kind of “cultural group selection” process (see later discussion). 

4   The SkillWorld Scenario 

In order to determine if the SLAC approach can support specialisation within tribes 
we construct a abstract and minimal simulated task domain that requires nodes to 
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perform specialized tasks cooperatively in order to satisfy their individual needs. We 
call the task domain SkillWorld and it is an adaptation of a sociologically inspired 
scenario originally given in [9, 10]. 

The SkillWorld consists of a population of N nodes. Each node may have zero or 
more links (up to a maximum of 20) to other nodes. Links are undirected such that the 
entire population can be considered  as an undirected graph G with each vertex being 
a node and each edge being a link. Each vertex (or node) is composed of three state 
variables – a “skill type” s ε {1,2,3,4,5}, an “altruism flag” a ε {0,1} and a 
satisfaction score or “utility” u ε R (where R is a positive real number). 

Periodically, with uniform probability, a node i is selected from the population N. 
A “job” J is then generated marked with a randomly chosen skill sJ. The skill is 
selected, again randomly with uniform probability, from the domain {1,2,3,4,5}. Job J 
is then passed to node i. If node i posses the correct matching skill (i.e. if si = sJ) then 
node i may process the job itself without any help from other nodes. For successfully 
processing a job J the receiving node gains one unit of credit: u ← u + 1. 

This process of generating and passing jobs to nodes represents user-level requests 
for services – such as, for example, searching for a particular file, performing some 
processing task or storing some data. In the SkillWorld we don’t represent the actual 
jobs to be done, rather, we represent the skill required to perform the job. In our 
minimal scenario, each job only requires one skill to be completed. 

But what if node i receives a job for which it does not have the correct skill (i.e. if 
si ≠ sJ) ? In this case i passes the job request to each neighbour in turn until all have 
been visited or one of them, j, agrees to process the job J. A neighbour j will only 
agree to process J if its skill matches (sj = sJ) and the altruism flag is set (aj = 1). If j 
does agree to process the job then this costs j a quarter unit of utility (uj ← uj – 0.25) 
yet increases the utility of i by one unit (ui ← ui + 1). 

What this means is that node i looks for an altruistic neighbour with the correct 
skill to process job J. If i finds such a neighbour (j) it increases its utility as if it had 
completed the job itself whereas j decreases its utility. This reflects the notion that j is 
altruistically processing J for the benefit of i and that users are happy when jobs 
submitted to their nodes are completed but are not happy when jobs from other nodes 
use their node resources with no immediate benefit to themselves. 

5   SLAC in the SkillWorld 

We apply the SLAC algorithm within SkillWorld by making the node skill types and 
the altruism flags into evolvable state variables such that they are copied from more 
successful  nodes (based on utility) and mutated occasionally with low probability.  

Although SLAC has previously been demonstrated as successful in promoting 
cooperation in both a Prisoner’s Dilemma playing scenario [6] and a simple file-
sharing scenario [6] it has not yet been applied within a scenario requiring intra-group 
(or tribe) specialisation in addition to altruism. We are therefore asking a lot from a 
simple algorithm: to self-organise the population into altruistic yet internally 
specialised tribes that pass and process jobs using their various skills. 

The SkillWorld is the simplest scenario we could think of that captures a process of 
specialisation for this initial investigation. We have a small number of skills (five in 
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these simulations) and we only pass jobs to immediate neighbours. Each node and job 
is related to a single skill only (rather than a subset of skills which would seem more 
realistic). Also we assume nodes can change skills at will (randomly via mutation). 
This latter assumption might not hold if skills relate to physical or unchangeable 
characteristics of nodes like storage or bandwidth for example. However, at this stage 
we leave more realistic scenarios with multi-hop passing and more complex skill set 
arrangements to future work. 

In order to measure the success of SLAC we take a simple measure - the 
proportion of submitted jobs that are completed. We can infer that a network in which 
the majority of jobs submitted are completed is sustaining internally cooperative and 
specialised tribes since the only way to complete most jobs is for nodes to pass them 
to altruistic neighbours with required skills. 

5.1   Some Experiments and Results 

Initially we ran a set of simulation experiments in which we initialised all nodes in the 
population with uniformly randomly selected skills, altruism flags and links. We 
experimented with a number of network sizes determining for each how many cycles 
before the high performance was achieved. 

In order to measure the success of SLAC we take a simple measure - the 
percentage of submitted jobs that are completed (PCJ). We can infer that a network in 
which the majority of jobs submitted are completed is sustaining internally 
cooperative and specialised groupings (or tribes) since the only way to complete most 
jobs is for nodes to pass them to altruistic neighbours with the required skills. 

We categorized “high performance” as a PCJ > 90% and ran simulations until this 
value was obtained - recording the number of cycles required. Hence, if SLAC was 
working well in the SkillWorld we would hope that within a small number of cycles 
the PCJ would become high. 

We used a mutation rate of 0.001 on skill type s and altruism flag a (shown in 
figure 1 as “mutation rate 2”). Mutation on the links (shown in figure 1 as “mutation 
rate 1”) was an order of magnitude higher (0.01). We carry over this assumption – 
that the mutation rate on the links should be higher than that on the “strategies” – 
from previous experimental work comparing several different scenarios and models 
[8]. We fixed the maximum number of links between nodes to 20. Links are 
undirected and therefore symmetric. If an operation results a node requiring a new 
link and it already has the maximum then a random link is discarded by the node and 
the new link accepted. Using this method nodes never refuse new links but may often 
lose old ones. This adds to the noisy and dynamic nature of the scenario. 

Figure 2 shows results from 30 individual simulation runs. Each point is a different 
run showing the first cycle at which the PCJ > 90%. As can be seen, high 
performance is attained within a few tens of cycles even for networks of size N = 105. 
Notice that there appears to be a very slight upward trend in cycles as N increases, 
however, this is negligible – the results therefore indicate close to zero scaling cost. 
This highly desirable property was also evidenced in a previous application of SLAC 
to a simulated fire-sharing scenario [6]. Figure 3 shows results under the same 
conditions except that all nodes are initialised to be selfish (a = 0). This gives a kind 
of “worst case scenario”  as  far as altruism evolving.  It  is  important to show that the  
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Fig. 2. Number of cycles to high performance for different network sizes. When PCJ > 90% 
this means that over 90% of all jobs submitted to nodes are completed. Note: overlapping 
circles have identical values. 
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Fig. 3. Number of cycles to high performance for different network sizes when all nodes are 
initialised selfish (a = 0). This can be compared to the random initialisation results in figure 2. 
Note that there is a reverse scaling cost here. The results for N = 1000 are worse than shown 
since three outliers at about 1000 cycles are not shown here. 

system can escape from this, since this demonstrates that even if a complete failure of 
node altruism should occur (either through chance or malicious attacks) then the 
system can recover relatively quickly. We notice here the reverse scaling properties 
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that we originally noticed and analysed in a previous “tag” model [9]. Essentially, 
with bigger populations, there is more likelihood of the chance formation of a small 
altruistic tribe. This then goes on to “seed” the population with altruism5. 

Interestingly, it was found that for populations where N < 1000 high performance 
was not produced even when runs were extended to several thousand cycles. 
Intuitively this is consistent with the “group selection” hypothesis concerning how 
SLAC operates. With small populations, there are not enough nodes to form enough 
competing groups (or tribes) so evolution cannot operate at the group level. 

5.2   History in the SkillWorld – Tribal Dynamics 

One way to convey the dynamics of a typical SkillWorld simulation run is to 
describe a typical “history” in narrative form – this method is sometimes used in 
computational sociology, particularly in work with artificial societies [1, 5] carried 
over from more traditional sociological methods of explanation. In the rest of this 
section we give such a “typical history”. Although we will make general points we 
will also refer to a specific single simulation, run given in Figure 4, to illustrate our 
analysis. 

Initially, the SkillWorld is a random graph, all nodes are connected via a few 
hops and clustering is low. Skills and altruism are randomly scattered. Very 
quickly, the graph breaks into a population of many disconnected components 
because nodes quickly re-wire themselves to better performing nodes. The better 
performing nodes are initially the non-altruists who exploit their groups (or tribes) 
selfishly. However, this is a non-sustainable strategy since this exploitation causes 
nodes to leave their exploited tribes and join tribes in which there is less 
exploitation – nodes in tribes with less exploiters in them do better (higher utility) 
because they are cooperating as a team. The tribes dominated by non-altruists 
quickly “wither away” as nodes leave. When no nodes are left then the tribe no-
longer exist – in this way tribes die, even though nodes do not die. This emergent 
property of the birth and death of tribes lays the ground for evolution to operate that 
the group (tribe) level. 

Figure 4 indicates the above process occurring in the first 10 cycles or so. Notice 
that the number of selfish nodes peaks, and the proportion of completed jobs (PCJ) 
bottoms out, at about cycle 10. The number of components (i.e. tribes) increases in 
the early phase peaking just before cycle 20 (representing a peak of 60 components). 

Altruistic tribes function well and grow as more nodes join, new tribes are 
occasionally formed as nodes randomly, through mutation, split from a tribe. As 
altruistic tribes grow larger they eventually become “infected” or “invaded” by a non-
altruist node – either by mutation of an existing member node or the entering of a new 
node to the tribe.  

When this happens the tribe is quickly destroy via dispersion since a non-altruist 
will exploit the tribe selfishly and this will lead to many more nodes quickly copying 
that node until the tribe “dies” because all nodes leave it – because a tribe dominated 
by selfish nodes gives lower utility to all nodes within it than one dominated by 
altruists. 

                                                           
5  See [9] for a more detailed explanation of this reverse-scaling cost including the beginnings 

of an analytical treatment. 
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Fig. 4. The time series of a typical single run in SkillWorld (N=1000). Shown are the number 
of selfish nodes as a proportion of the entire population (selfish), the proportion of submitted 
jobs that get completed (PCJ), the clustering coefficient (C), the number of components in the 
population (comps, which is normalised by dividing by 60) and the average probability that a 
route exists between any two nodes (conprob). 

Figure 4 shows, from about cycle 20 onward, the above process occurring. A 
decrease in the number of components (comps) and an increase in completed jobs 
(PCJ) are correlated with a decrease in the number of selfish nodes (selfish). This is 
because altruistic tribes grow in size – reducing the total number of components 
(comps) and reducing selfish nodes (selfish). By about cycle 30 selfishness is very 
low and completed jobs (PCJ) reaches a high level. Notice that the dynamic nature of 
the formation and dissolution of the tribes is reflected in the variation of the number 
of components over time (comps) after PCJ goes high. 

History in the SkillWorld is the history of the formation, growth and destruction of 
tribes. From the simple rules of the SLAC algorithm an evolutionary process emerges 
at the tribal or group level. Essentially one can think of this evolution as the 
competition between tribes to retain nodes to continue to exist. This process is in 
constant flux due to mutation and movement, no equilibrium state is attained and no 
tribe lasts forever. As long as new altruistic tribes are created at least as rapidly as 
they are destroyed then altruism can survive. 

Figure 5 shows a small detail of snapshots of the population over time (space does 
not permit full size snapshots). As can be seen, tribes quickly emerge and grow, 
producing various structures and sizes with internally specialised nodes.  

5.3   Tribal Structures 

Within the SkillWorld, tribes with different structures and skill mixes will support 
different levels of utility – a highly connected tribe with an even mix  of  skills  would 
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Fig. 5. Details showing just a small part of the entire population for the same typical run as 
show in figure 4. From an initially random graph, disconnected components (we call tribes) 
emerge with internal specialisation and rich structure. The numbers in the nodes represent the 
node skill type.6 

produce better results than a tribe missing some skill. Hence, selection at the tribe 
level (group selection) will tend to operate to structure the tribes into more optimal 
structures of skill types. We would therefore expect to see tribes composed of nodes 
possessing each skill type linked together such that a node receiving a job can either 
process it directly or will be directly linked to a node with the appropriate skill willing 

                                                           
6 Full sized pictures can be found at http://www.davidhales.com/esoa05pics/ 
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to do the job. In the SkillWorld then, we have tribe level selection not only operating 
to control selfishness but also to tune the internal (organisational) structure of the 
tribe. 

We find this particularly exciting since we believe that by increasing the 
complexity of the task domain and giving nodes a little more freedom to hop more 
than one link within their tribe it should be possible to evolve tribes with complex 
organisational structures tuned to performing in the given task domain. Moreover, 
since the tribes are constantly evolving they should be able to change their structure 
dynamically to address a change in the task domain7. 

6   Conclusion 

We have demonstrated that the SLAC algorithm can be applied in a scenario (the 
SkillWorld) requiring node specialisation in addition to the suppression of selfish 
behaviour. When the algorithm is executed the network quickly divides into 
competing “tribes” (disconnected components). An evolutionary process then 
emerges at the group level selecting efficient internally specialised tribes – which 
deliver high levels of service with respect to user submitted jobs at the nodes.  

We adapted the SkillWorld scenario from a previous model developed for the 
purposes of social scientific theorising [10]. The previous “tag-based” model relied on 
mean-field mixing (with no population structure) and followed a conventional 
evolutionary process.  

Our belief that the SLAC algorithm works via a kind of group selection occurring 
at the level of the “tribe” gave us the a priori expectation that it would select tribes 
that could perform well in the SkillWorld. In this sense, dare we claim the beginning 
of a “proto-theory” allowing us to make some modest qualitative predictions? 

More generally, we claim that this paper demonstrates concretely within a dynamic 
network the emergence of what has been termed a “meta-state transition” (MST) 
within evolution [12]. It has been argued that the emergence of life itself and major 
steps in biological evolution (e.g. multi-cellular organisms) and social evolution (e.g. 
large complex societies) occur over such MST’s. In this context we advance our 
results as possibly of great theoretical insight. 

It is important to understand that the concept of the “tribe” is actually a theoretical 
construct we use to help to explain and understand the emergent phenomena produced 
by the SLAC algorithm over time. The tribes are not “programmed” into the nodes a 
priori but rather emerge from the interplay of task domain, interaction and the SLAC 
algorithm. We use the concept of “tribes” because we believe it to be valuable in 
beginning to understand, control and theorise about what is occurring in SLAC 
networks. However, since the tribes are emergent we do not begin with a “theory of 
tribes” rather we observe, experiment and induce knowledge about them. As 
discussed below, this does not preclude, but, in fact, should support, the formation of 
an analytical theory – we hope. 

Since the nodes do not die or model genetic operators, the tribe level selection 
process can be viewed as a kind of artificial cultural group selection process. What is 

                                                           
7  Further experiments not detailed here, demonstrate that even when all skills in the population 

are initialised to the same single type – the network quickly adapts into an even skill spread 
due to mutation on the skills and selection at the tribe level. 
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quite extraordinary is that such a simple node level algorithm (SLAC) based on a few 
plausible assumptions about preferential attachment can lead to such complex and 
useful group level evolutionary dynamics. 

A key issue however, is that, although SLAC is simple to implement the 
dynamics are complex and currently it is not know how analytical tools can be 
applied to truly understand, predict and prove the properties of SLAC. So far the 
only “proofs” we have are in the form of “existence proofs” demonstrated by 
empirical analysis of simulation runs. Such “proofs” are not watertight and can 
always be questioned given anomalous results from future simulation studies (rather 
like experiments in the natural sciences). We have some confidence in the general 
results from SLAC-like algorithms however (such as those based purely on “tags”) 
since there have been a number of replications of those results from multiple 
independent implementations using different languages, machines and programmers 
[4]. However, none of this offers predictive insight into the process as a good 
analytical model would. What we currently have is a kind of “toolbox” of 
algorithmic heuristics that appear to be reasonably robust over some minimal task 
domains and scenarios. 

Another open issue is the concept of utility as used in the simulations given here. 
We assume that some simple measure can be readily calculated and that such 
measures can be compared between nodes. Both such assumptions may not hold in 
many task domains. Additionally, there may be incentives for nodes to lie about their 
utility – we leave an exploration of these issues to future work. 

However, currently, the only way to apply these methods to new domains is to 
simulate and experiment – copying and adapting heuristics that worked previously in 
similar domains. Perhaps this is not so far away from the edit / compile / debug cycle 
of good old-fashioned software engineering (GOFSE). This could bode well for future 
progress. 
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Abstract. This paper introduces systems of exchange values as tools
for the self-regulation of multi-agent systems. Systems of exchange val-
ues are defined on the basis of the model of social exchanges proposed by
J. Piaget. A model of social control is proposed, where exchange values
are used for supporting the regulation of the performance of social ex-
changes. Social control is structured around two coordinated functions:
the evaluation of the current balance of exchange values and the de-
termination of the target equilibrium point for such balance, and the
maintenance of the balance of exchange values around the current target
equilibrium point. The paper focuses on the second function of social con-
trol, introducing a (for the moment, centralized) equilibrium supervisor
that solves the problem of keeping the system in a state of equilibrium by
making use of a Qualitative Markov Decision Process that uses intervals
for the representation of exchange values.

1 Introduction

Social control [1, 2] is a powerful notion for explaining the self-regulation of a
society. On the other hand, following J. Piaget [3], agent interactions can be
conceived as social exchanges that also include an evaluation process, through
which so-called qualitative exchange values are associated with each stage of
exchange.

The dynamics of such social exchanges constitutes, through the exchange of
values, a qualitative economy, and the regulation of such economy of qualitative
values, through various kinds of social mechanisms and processes (like rules,
habits etc.), constitutes the main purpose of social control [3].

In this paper, we build on our previous work on social exchanges in multi-agent
systems [4, 5, 6, 7], to consider in a preliminary fashion the way social control can
be construed as a self-regulated system of exchange values.

In Sect. 2, we summarize the sociological bases of the work. In Sect. 3, we
present our proposal for the self-regulation of exchanges, based on equilibrium
supervisors, using Interval Mathematics to represent exchange values and Quali-
tative Interval Markov Decision Processes (QI-MDP) to regulate the equilibrium.
Section 4 is the Conclusion.
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2 Sociological Bases of the Work

2.1 Piaget’s Theory of Exchange Values

We summarize here J. Piaget’s approach to social exchanges [3].
Interactions between individuals are understood as exchanges of services

among them, involving not only the realization of services by some individuals
on behalf of others, but also the evaluation of such services, from various points
of view, by every individual involved in them.

The evaluation of a service by an individual (either the server of the service
or its client) is done on the basis of a scale of so-called exchange values, that are
of a qualitative nature, since such values express subjective evaluations.

Exchange values give rise to a qualitative economy of social exchanges, where
individuals acquire credits for services they have performed, and debits to others
for services the others have performed to them. The balances of exchange values
allow individuals to observe the state of equilibrium of the social exchanges (even
between just two individuals) and to react according to such state (e.g., trying
to enforce equilibrium, to overcome high debts, to keep their status as privileged
beneficiaries of the exchanges etc.).

A social exchange between two agents, α and β, is performed involving two
types of stages. In stages of type Iαβ , the agent α realizes a service for the agent
β. The exchange values involved in this type of exchange stage are the following:

- rIαβ
is the value of the investment done by α for the realization of a service

for β. An investment value is always negative.
- sIβα

is the value of β’s satisfaction due to the receiving of the service done
by α.

- tIβα
is the value of β’s debt, the debt it acquired to α for its satisfaction with

the service done by α.
- vIαβ

is the value of the credit that α acquires from β for having realized the
service for β.

In stages of the type IIαβ , the agent α asks the payment for the service
previously done for the agent β, and the values related with this exchange stage
have similar meaning: vIIαβ

is the credit charged by α on β; tIIβα
is the debit

acknowledge by β; rIIβα
is the cost of the return service performed by β to α;

sIIαβ
is the satisfaction got back by α. The order in which the exchange stages

may occur is not necessarily Iαβ − IIαβ .
Piaget’s modelling of social exchanges aim at the formalization of the rules

that determine the equilibrium of social exchanges:

Rule Iαβ : (rIαβ
= sIβα

) ∧ (sIβα
= tIβα

) ∧ (tIβα
= vIαβ

)
Rule IIαβ : (vIIαβ

= tIIβα
) ∧ (tIIβα

= rIIβα
) ∧ (rIIβα

= sIIαβ
)

Rule IαβIIβα : vIαβ
= vIIαβ

Rule Iαβ states the conditions for the internal equilibrium of stage Iαβ , imply-
ing that rIαβ

= vIαβ
. Rule IIαβ states the conditions for the internal equilibrium

of stage IIαβ , implying that vIIαβ
= sIIαβ

. Rule IαβIIαβ states the conditions
for the external equilibrium between the two stages, Iαβ and IIαβ , implying that
rIαβ

= sIIαβ
.
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2.2 Social Organization, Social Equilibrium and Social Control

The organization of a society is a structure O = (A,F,Ro,E,BV,Ru), where: A
is the set of agents; F is the set of services (functions) that agents, and sets of
agents, may provide for each other; Ro is the set of social roles that agents may
be assigned to; E is the set of social exchanges that agents may perform; BV
is the set of balances of exchange values that supports the various ways agents
may evaluate social exchanges; Ru is the set of social rules that may be used to
regulate the agents’ behaviors. We let undetermined the details of the elements
of such sets, in order to have an abstract notion of social organization, that may
be instantiated in various ways, in various applications.

A few more complementary elements should be added, so that the dynamics
of the organization can be explained:

- the way the set E of all possible social exchanges are related to the subset of
agents that are capable of realizing them together, given by Cap : ℘(A) → E;

- the way each social function is implemented by a set of agents in the form
of a social exchange, given by I : F × ℘(A) → E;

- the way each agent evaluates the performance of an exchange, according
to the piagetian theory of exchange values explained above, given by the
function Ev : E × A → BV ;

- the way each social rule determines the permitted, obligatory and forbidden
behaviors of agents in a social exchange, according to the balance of exchange
values assigned to the social exchange, regarding the performance of a social
function, given by Ru : F × A × E → ℘(IBeh × {p,o, f}).

In any dynamical system where a notion of equilibrium can be defined, two
related concepts immediately apply, namely, the concepts of deviation and com-
pensation. Deviation is any action that may happen in a system and lead it
to disequilibrium (away from equilibrium). Compensation is any action that
may happen in a system, when it is in disequilibrium, and lead it back to
equilibrium.

In social organizations, balances of exchange values can be taken as the bases
for the definition of social equilibrium [3]: in general, a social organization is in
equilibrium if the balance of exchange values is such that there is an equanimous
distribution of exchange values among the agents1. Often, the organization is
said to be in equilibrium if the balance of exchange values of every agent, with
respect to each other agent with which it has interacted, is zero.

Regulation is the process of determining which compensation should be per-
formed, at a given moment, to compensate a deviation, when the system is in
disequilibrium. In Homan’s terms [2], which were adopted in [1], Piaget’s process
of regulation is a social control process.

Social rules specify mechanisms of social control by stipulating, for each state
of disequilibrium, the kind of action that should be performed in order to re-
establish the equilibrium of the system.

1 Where equity is defined in a way that depends on the particular organization that
is being considered.
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3 Self-regulation of Social Exchanges Based on
Equilibrium Supervisors

3.1 Using Interval Mathematics to Represent Exchange Values

Interval Mathematics [8] is a mathematical theory introduced in the 1960’s that
aims at the automatic and rigorous controlling of the errors that arise in nu-
merical computations. Any real number x ∈ R is represented by a real interval
X = [x1, x2], with x1, x2 ∈ R and x1 ≤ x ≤ x2. The set of intervals is denoted
by IR. x1 and x2 denote, respectively, the left and right endpoints of X.

In this paper, intervals are used to capture the qualitative nature of Pi-
aget’s concept of scale of exchange values [3]. Consider the set IRL = {[x1, x2] |
−L ≤ x1 ≤ x2 ≤ L, x1, x2 ∈ R} of real intervals bounded by L ∈ R (L > 0)
and s ∈ R, called the reference value, such that −L < s < L. Let IRs

L =
(IRL,+, Θs, ·̃ · ·s,≈s) be an s-centered scale of interval exchange values, where:

(i) + : IRL × IRL → IRL, X + Y = [max{x1 + y1,−L},min{x2 + y2, L}] is the
L-bounded addition operation.

(ii) An s-reference interval is any X ∈ IRL such that mid(X) = s, where
mid(X) = x1+x2

2 is the mid point of X. The set of s-reference intervals is
denoted by Θs.

(iii) An s-compensation interval of X ∈ IRL is any interval X ′ ∈ IRL such that
X + X ′ ∈ Θs. The set of s-compensation intervals of X is denoted by X̃s.

(iv) X ≈s Y ⇔ ∃Y ′ ∈ Ỹs : X + Y ′ ∈ Θs defines the qualitative equivalence
relation.

For a given s ∈ R, an interval μX̃s ∈ X̃s is said to be the least s-compensation
interval of X if whenever there exists another s-compensation interval S ∈ X̃s

for X it holds that d(μX̃) ≤ d(S), where d(X) is the diameter of X, defined by
d(X) = x2 − x1. For all X ∈ IRL, it follows that:

Proposition 1. For a given s ∈ R, it holds that (i) X̃ = [−mid(X) + s −
k,−mid(X) + s + k], with k ≥ 0 ∈ R; (ii) μX̃s = [−mid(X) + s,−mid(X) + s].

To avoid the problems of representing the real number s in the floating point
system and of the rounding errors that arise in any numerical computation [8],
it is a good practice to consider a given tolerance ε ∈ R (ε ≥ 0) such that the
reference value for the scale is given by the interval sε = [s−ε, s+ε], with s−ε and
s+ ε being machine numbers. An sε-reference interval is any X ∈ IRL such that
mid(X) ∈ sε. The set of sε-reference intervals is denoted by Θsε

. The least sε-
compensation interval is then given by μX̃sε

= [−mid(X)+s−ε,−mid(X)+s+ε].

3.2 Self-regulation of Social Exchanges

In general, the exchange values-based mechanism of social control may be put to
operate in two ways. On the one hand, social rules may be enforced by authorities
that have the capacity to force the agents of the society to follow such rules. On
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Fig. 1. The mechanism of self-regulation

the other hand, social rules may be internalized by the agents, so that agents
follow such rules because they were incorporated into the agents’ behaviors.

In the following, as a preparatory step to the future modelling of decentralized
social control mechanisms based on rules internalized in agents, we introduce a
centralized model version of social control, extending the notion of supervisor of
social equilibrium, first proposed in [5].

We consider that a supervisor of social equilibrium is a component of the
society (possibly an agent) that is able to determine, at each time, the best
target equilibrium point for the system and to recommend to the agents the set
of actions that should be performed in order to lead the system towards the
equilibrium, and to maintain the system equilibrated until another equilibrium
point is required.

Figure 1 pictures our idea of self-regulation based on supervisors of social
equilibrium. Ag is the set of agents that constitute the system. ExtEnv is the
external environment of the system. IntEnv is its internal environment (all sys-
tem objects, excluding the agents). V al is the set of values the agents exchange
while their are interacting.

Eval is the evaluator, the module of the supervisor that is responsible for
evaluating the current state of the system, both in what concerns its internal
condition of equilibrium and in what concerns the demands coming from the
external and the internal environments. Trg is the target equilibrium point that
the evaluator determines as the point of equilibrium in which the system should
be at the current moment. Rec is the recommender, the module of the supervisor
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that analyzes the current balance of exchange values and, given the current target
equilibrium point, makes recommendations of exchanges to the agents. rec is the
set of recommendations that may be given by the recommender to the agents.

The logic of the regulation process is embedded in the equilibrium supervisor
in the form of a recommendation policy, that determines, at each time, for each
state, an appropriate action aiming to reach the desirable equilibrium state.

3.3 The Modelling of Social Exchanges

Let T be a set of discrete instants of time. A qualitative interval exchange-value
system for modelling the exchanges from an agent α to an agent β is a structure
IR = 〈IRL; (rI, sI, tI, vI), (rII, sII, tII, vII)〉, where

rIαβ
, sIβα

, tIβα
, vIαβ

, rIIβα
, sIIαβ

, tIIβα
, vIIαβ

: T → IRL ∪ {⊥} (1)

are the exchange-value functions that evaluate, at each time instant t ∈ T ,
the investment, satisfaction, debt and credit values, among each two different
interacting agents α and β, in each stage I and II, respectively. The symbol ⊥
denotes an undefined exchange value. In the following, for k = r, s, t, v, we use
the notation kIαβ

(t) = kt
Iαβ

, kIIαβ
(t) = kt

IIαβ
, kIβα

(t) = kt
Iβα

and kt
IIβα

. At a given
time instant t, the following constraints must be satisfied:

rt
Iαβ

= ⊥ ⇒ st
Iβα

= ttIβα
= vt

Iαβ
= ⊥; vt

IIαβ
= ⊥ ⇒ ttIIβα

= rt
IIβα

= st
IIαβ

= ⊥;

rt
Iαβ

�= ⊥ ⇒ vt
IIαβ

= ⊥, (2)

where (i) rt
Iαβ

= ⊥ denotes that the agent α did not realize a service for the agent
β at time t, and, therefore, all the other corresponding exchange values in the
stage I resulted undefined; (ii) vt

IIαβ
= ⊥ denotes that the agent α, at time t, did

not charge the credit for a service previously done for the agent β, and, therefore,
all the other corresponding exchange values in the stage II resulted undefined. The
implication (2) means that it is not possible for an agent α to realize a service for
an agent β and, at the same time t, to charge him a credit. From (2) it follows
that is also required that vt

IIαβ
�= ⊥ ⇒ rt

Iαβ
= ⊥.

A configuration of exchange values for any pair of agents α and β at a time
instant t is specified by one of the tuples of exchange values (rt

Iαβ
, st

Iβα
, ttIβα

, vt
Iαβ

),
(rt

Iβα
, st

Iαβ
, ttIαβ

, vt
Iβα

), (vt
IIαβ

, ttIIβα
, rt

IIβα
, st

IIαβ
), (vt

IIβα
, ttIIαβ

, rt
IIαβ

, st
IIβα

).
The exchange balance of stages of type I of a social exchange process between

any pair of agents α and β that has occurred during T is a tuple

bT
I{α,β} =

(
rT
Iαβ

, rT
Iβα

, sT
Iαβ

, sT
Iβα

| tTIαβ
, tTIβα

, vT
Iαβ

, vT
Iβα

)
, (3)

where, for k = r, s, t, v, kT
Iαβ

=
∑

t∈T kt
Iαβ

and kT
Iβα

=
∑

t∈T kt
Iβα

, for all kt
Iαβ

�= ⊥
and kt

Iβα
�= ⊥. The values to the left of the symbol “|” are called material values;

the ones to the right are virtual values [3]. The exchange balance of stages of
type II, bT

IIαβ
, is defined analogously. The general exchange balance is given by

bT
{α,β} = bT

Iαβ
+ bT

IIαβ
. (4)
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The material results mαβ and mβα, according to the points of view of α
and β, respectively, of a social exchange process between such agents occurring
during T are given by the sum of the material values involved in the process:

mT
αβ = rT

Iαβ
+ sT

IIαβ
+ rT

IIαβ
+ sT

Iαβ
, mT

βα = rT
Iβα

+ sT
IIβα

+ rT
IIβα

+ sT
Iβα

. (5)

Analogously, the virtual results vαβ and vβα are given by:

vT
αβ = tTIαβ

+ vT
IIαβ

+ tTIIαβ
+ vT

Iαβ
, vT

βα = tTIβα
+ vT

IIβα
+ tTIIβα

+ vT
Iβα

. (6)

The general results takes into account all kinds of values is obtained by:

gT
αβ = mT

αβ + vT
αβ , gT

βα = mT
βα + vT

βα. (7)

A social exchange process between a pair of agents α and β is said to be
in equilibrium around s ∈ R if, given a tolerance ε ∈ R (ε ≥ 0), it holds that
gT

αβ ∈ Θsε
and gβα ∈ Θsε

. The material equilibrium around s ∈ R, with tolerance
ε ∈ R (ε ≥ 0), is achieved when mT

αβ ∈ Θsε
and mβα ∈ Θsε

. If a social exchange
process between a pair of agents α and β is in equilibrium around 0, then the
system is said to be in equilibrium in the sense of Piaget. This special case of
equilibrium problem was subject of previous works [4, 5].

To extend these concepts to multi-agents systems composed by m agents, a
matrix-like notation is introduced. An m × m interval �-matrix [xij ]� is defined
as the interval m × m matrix [xij ] where xij = � whenever i = j, that is:

[xij ]� =

⎛
⎜⎜⎜⎝

� x12 · · · x1m

x21 � · · · x2m

...
... · · ·

...
xm1 xm2 · · · �

⎞
⎟⎟⎟⎠

A 2 × 2 �-matrix is denoted schematically as an ordered pair

(x12, x21)�. (8)

For X = [xij ]� and Y = [yij ]�, we define: (i) the addition: X+Y = [xij +yij ]�;
(ii) the qualitative equivalence relation: X ≈sε

Y ⇔ (∀i �= j) xij ≈sε
yij , for a

given tolerance ε. Additionally, (iii) any �-matrix [nij ]
� such that nij ∈ Θsε

is
called an sε-reference �-matrix. The set of such �-matrices is denoted by Nsε

.
In a multi-agent system of m agents, the exchange values determined by the

functions in (1) are given by the eight m × m × #T interval �-matrices KI =[
kt
Iαβ

]�

and KII =
[
kt
IIαβ

]�

, called investment (K = R), satisfaction (K = S),
debt (K = T ) and credit (K = V) matrices for the exchange stages I and II,
respectively, that occurred between each two agents α and β in T .

For t′ ∈ T , Kt′
I =

[
kt′
Iαβ

]�

and Kt′
II =

[
kt′
IIαβ

]�

are m × m �-matrices. For
a time sequence T = t1, . . . , tn, the matrices of global investment, satisfac-
tion, debt and credit are given by KT

I =
∑tn

t=t1
Kt

I and KT
II =

∑tn

t=t1
Kt

II, for
K = R,S, T ,V.
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The exchange balance of stages of type I, given in (3), is represented by a
tuple of �-matrices: BT

I =
(
RT

I ,ST
I | T T

I ,VT
I

)
. Analogously, the exchange bal-

ance of stages of type II is represented as a tuple BT
II . The general exchange

balance given in (4) can be represented by the tuple BT =
(
RT ,ST | T T ,VT

)
,

where
KT = KT

I + KT
II, for K = R,S, T ,V. (9)

The material, virtual and general results of social exchange processes, given in
(5), (6), and (7), are evaluated, respectively, by MT = RT +ST , VT = T T +VT

and GT = MT + VT , where RT ,ST , T T ,VT are given in (9). A multi-agent
system is said to be in equilibrium around s ∈ R, with tolerance ε, if GT ∈ Nsε

.
It is in material equilibrium around s ∈ R when MT ∈ Nsε

.

3.4 Solving the Equilibration Problem Using a QI–MDP

The equilibrium supervisor, at each instant of time, analyzes the conditions and
constraints imposed by the external and the internal environments, determines
the target equilibrium point, evaluates the material results of exchange processes
between each pair of agents and makes suggestions of exchanges for them, in or-
der to keep the material results of exchanges in equilibrium. The equilibrium
supervisor also takes into account the virtual results of the exchanges in or-
der to decide which type of exchange stage he shall suggest for the two agents
to realize. To achieve that purpose, the equilibrium supervisor models the ex-
changes between each pair of agents as simultaneous Markov Decision Processes
(MDP) [9].

Consider a bound L ∈ R (L > 0) for the set of real intervals IRL and the set
S = {−L,−L + L

n ,−L + 2L
n , . . . , L − 2L

n , L − L
n , L} ⊆ N of possible reference

values induced on IRL by a given n > 0 ∈ N. Given a target equilibrium point
ω ∈ R, a reference value s ∈ S is chosen such that ω ∈ [s − ε, s + ε], for a given
tolerance ε ∈ R (0 < ε < L

n ) and machine numbers s − ε and s + ε.
Let Ês = {E

−n− sn
L

s , . . . , E−1
s , E0

s , E1
s , . . . , E

n− sn
L

s } be the set of 2n + 1 equiv-
alence classes of intervals X ∈ IRL, defined, for i = −n − sn

L , . . . , n − sn
L , as:

Ei
s =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{X | s + iL
n ≤ mid(X) < s + (i + 1)L

n } if − n − sn
L ≤ i < −1

{X | s − L
n ≤ mid(X) < s − ε} if i = −1

{X | s − ε ≤ mid(X) ≤ s + ε} if i = 0
{X | s + ε < mid(X) ≤ s + L

n } if i = 1
{X | s + (i − 1)L

n < mid(X) ≤ s + iL
n } if 1 < i ≤ n − sn

L .

(10)

The classes Ei
s ∈ Ês are the supervisor representations of classes of unfa-

vorable (i < 0), equilibrated (i = 0) and favorable (i > 0) material results of
exchange processes, related to the reference interval s that approximates the tar-
get equilibrium point w. Whenever it is understood from the context, we shall
denote by E− (or E+) any class Ei<0

s (or Ei>0
s ). The accuracy of the equilibrium

supervisor is given by κn = L
n . The range of the midpoints of the intervals that

belong to a class Ei
s is called the representative of the class Ei

s. Whenever it is
clear from the context, we identify a class Ei

s with its representative.
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The states of the QI–MDP model are �-matrices E =
[
Ei

αβ

]�

, where each

entry Ei
αβ ∈ Ês is the class representing the material results of the social ex-

change process between α and β, from the point of view of the agent α. For the
analysis of the equilibrium, we shall consider each pair of co-related classes of
material results

(
Ei

αβ , Ej
βα

)
. The �-matrix

[
E0

αβ

]�

is the terminal state, repre-
senting that the system is in equilibrium around s.

The actions are state transitions
[
Ei

αβ

]� [Ai
αβ]�
�→

[
Ei′

αβ

]�

, with Ei
αβ , Ei′

αβ ∈ Ês

and
[
Ai

αβ

]�

being an interval �-matrix operator such that mid
(
Ei

αβ + Aαβ

)
∈

Ei′
αβ , where each interval action Ai

αβ should be of the following types:

- a compensation interval, denoted by Ci
s, of a class representative Ei

s;
- a go-forward-k-step interval, which is an interval, denoted by F i

k, that trans-
forms a class Ei

s into E
(i+k) �=0
s , with i �= L;

- a go-backward-k-step interval, which is an interval, denoted by Bi
−k, that

transforms a class Ei
s into E

(i−k) �=0
s , with i �= −L.

The set C of compensation intervals is shown in Table 1. The set F of go-
forward intervals and their respective effects are partially presented in Table 2.
The set of go-backward intervals, denoted by B, can be specified analogously.

For example, in the case of just two agents α and β, for the classes of material
results (using the notation in (8)), with −n − sn

L ≤ i < −1 and 1 < j ≤ n − sn
L :

(
Ei

αβ , Ej
βα

)�

≡
([

s + i
L

n
, s + (i + 1)

L

n

]
,

[
s + (j − 1)

L

n
, s + j

L

n

])�

,

it follows that the compensation–compensation action
(
Ci, Cj

)� and the go-

backward−3–go-forward+2

(
Bi

−3, F
j
+2

)�

action are specified by, respectively,

Ci =
[
−2i + 1

2
L

n
− ε,−2i + 1

2
L

n
+ ε

]
, (11)

Cj =
[
(1 − 2j)

2
L

n
− ε,

(1 − 2j)
2

L

n
+ ε

]
, (12)

Table 1. Specification of compensation intervals

State Compensation Interval Ci ∈ C
Ei,−n≤i<−1

s [− ( 2i+1
2

L
n

) − ε, − ( 2i+1
2

L
n

)
+ ε]

E−1
s [ 12

(
L
n

+ ε
) − ε, 1

2

(
L
n

+ ε
)

+ ε]
E0

s [0, 0]
E1

s [− 1
2

(
L
n

+ ε
) − ε, − 1

2

(
L
n

+ ε
)

+ ε]
Ei,1<i≤n

s [ (1−2i)
2

L
n

− ε, (1−2i)
2

L
n

+ ε]
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Table 2. Specification of some go-forward intervals and their respective effects

State Go-forward interval F i
+k ∈ F Effect

E
i,−n− sn

L
≤i<−2

s

[
k L

n
− ε, k L

n
+ ε

]
0<k≤−i−2 Ei

s �→ Ei+k,i<i+k≤−2
s

E−2
s

[
L
n

− ε, L
n

+ ε
]

E−2
s �→ E−1

s

Ei,−n− sn
L

≤i<−1 [
k L

n
− ε, k L

n
+ ε

]
1−i≤k≤n− sn

L
−i−1 Ei

s �→ E
i+k,1<i+k≤n− sn

L
s

E−1
s

[
k L

n
− ε, k L

n
+ 2ε

]
2≤k≤n− sn

L
E−1

s �→ E
k−1,1<k−1≤n− sn

L
s

E0
s

[
k L

n
, (k + 1) L

n

]
0<k≤n− sn

L
−1 E0

s �→ E
k+1,1<k+1≤n− sn

L
s

E
i,1<i≤n− sn

L
s

[
k L

n
− ε, k L

n
+ ε

]
0<k≤n− sn

L
−i

Ei
s �→ E

i+k,i<i+k≤n− sn
L

s

Bi
−3 =

[
−3

L

n
− ε,−3

L

n
+ ε

]
, (13)

F j
+2 =

[
2
L

n
− ε, 2

L

n
+ ε

]
, (14)

resulting in the state transitions, with −n − sn
L ≤ i < −1 and 1 < j ≤ n − sn

L :

(
Ei

αβ , Ej
βα

)� (11,12)∗
�→

(
E0

αβ , E0
βα

)�
,
(
Ei

αβ , Ej
βα

)� (13,14)∗
�→

(
E

(i−3)
αβ , E

(j+2)
βα

)�

.

Given a target equilibrium point w ∈ R (which specify the reference
value s), the equilibrium supervisor has to find, for each state [Ei

s]
� representing

the actual material result, the action that shall achieve the terminal state [E0
s ]�

(representing that the system is in equilibrium around s) or, at least, another
state from where the terminal state can be achieved, with the least number of
steps.2 Such action generates an optimal exchange recommendation, consisting
of a partially defined exchange stage that the agents are suggested to perform.
This partial definition shall be completed by the analysis of the virtual results,
which allows the specification of which particulary types of exchange stages (I or
II) should be considered. However, since the agents are autonomous, they may
not follow the recommendations exactly. This means that there is a probability
that the system achieves another state different from the one expected (or sug-
gested) by the supervisor. Even if the agents follow a recommendation exactly,
we will show that the effect may not be the expected by the supervisor.

For a given tolerance 0 ≤ ε < κn = L
n , where κn is the equilibrium supervisor

accuracy, we define:

Definition 1. A Qualitative Interval Markov Decision Process (QI–MDP), for
keeping the social exchanges in a multi-agent system in equilibrium around a
reference interval s, is a tuple 〈Es,A,H,R〉L,n

ε , where:

2 We observe that the choice of such actions are also regulated by the rules of the social
exchanges, and, therefore, there are some state transitions that are not allowed.
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(i) The set of the states of the model is the set of m × m star-matrices

Es = {
[
Ei

αβ

]� | Ei
αβ ∈ Ês}

of classes of material results as specified in (10).
(ii) The set of the actions of the model is the set of m × m star-matrices

A = {
[
Ai

αβ

]� | Ai
αβ ∈ C ∪ F ∪ B},

of compensation Ci ∈ C, go-forward F i
+k ∈ F and go-backward Bi

−k ∈ B
intervals.

(iii) H : Es × A → Π(Es) is the state-transition function, that gives for each
state and each action, a probability distribution over the set of states;

(iv) R : (Es × A) → R is the reward function, giving the expected immediate

reward gained by choosing an action
[
Ai

αβ

]�

when the current state of the

model is
[
Ei

αβ

]�

.

A sample reward function R : (E × A) → R that conforms to the idea of
supporting a recommendation function that is able to direct pairs of agents
into social equilibrium is partially sketched in Table 3.3 This particular function
illustrates various requirements that should be satisfied by all reward functions
of the model. Observe, for instance, that if the current state is of the type
(E−

s , E+
s )�, then the best action to be chosen is the compensation-compensation

action (C,C)�, which results in a state transition (E−
s , E+

s )� �→ (E0
s , E0

s )�. Any
other choice will make the agents either take a long way to the equilibrium or get
away from it. On the other hand, if the current state is of type (E−

s , E−
s )�, then a

compensation-compensation action (C,C)� would generate a recommendation of
agent exchanges of satisfaction-satisfaction type, which is impossible according
to the model of social interactions [3], since it is impossible for an agent to get
a satisfaction value from no service at all. The function R states that (C,C)� is
a very bad action to be chosen in such situation.

Table 3. Partial schema of the reward function R for the case of two interacting agents

R (C, C) (0ε, C) (C, 0ε) (B−1, F+1) (B−3, F+3) (F+1, B−1) (C, B−1) (B−3, C)

(E−, E+) 30 20 -30 -5 -10 3 20 20
(E+, E+) 30 20 20 0 0 0 18 20
(E−, E−) -30 -30 -30 30 0 30 28 26

Any optimal policy π∗ : E → A should satisfy the set of requirements ex-
pressed by the schema partially sketched in Table 4 (for any pair of agents α
and β). Notice that it is a non deterministic policy.
3 The notation given in (8) was used in the tables 3, 4 and 5, omitting the symbol �

of the �-matrices, for simplicity.
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Table 4. Partial schema of the optimal policy π∗ for the case of two interacting agents

State Action State Action

(Ei, Ej)1<j≤n
−n≤i<−1 (Ci, Cj) (Ei, E0)−n≤i<−1 (F i

+(−i+1), B
0
−1)

(Ei, E1)−n≤i<−1 (Ci, B1
−1) (E−1, E0) (F −1

+1 , B0
−1)

(E−1, E1) (F −1
+1 , B1

−1) (Ei, E−1)−n≤i<−1 (F i
+(−i+1), B

−1
−1)

(Ej , Ei)1<j≤n
−n≤i<−1 (Cj , Ci) (E−1, Ej)−n≤j<−1 (F −1

+2 , Bj
−1)

(E1, Ei)−n≤i<−1 (B1
−1, C

i) (E−1, E−1) (F −1
+2 , B−1

−1)
(Ej , E−1)1<j≤n (Cj , F −1

+1 ) (Ei, Ej)−n≤i,j<−1 (Bj
−1, F

i
+(−i+1)) or

(E1, E−1) (B1
−1, F

−1
+1 ) (F i

+(−i+1), B
j
−1)

Table 5. Partial schema of the optimal value recommendation ρπ∗

State Optimal policy Recommendation Label

(Ei, Ej)1<j≤n

−n≤i<−1 (Ci > 0, Cj < 0) ((rβα, Cj), (sαβ , Ci)) R1

(Ei, Ej)1<i,j≤n (Ci < 0, Cj < 0)
((rαβ, Ci), (sβα, Cj))
or ((rβα, Cj), (sαβ, Ci))

R2

R3

(E0, Ej)1<j≤n (0ε, C
j < 0) ((rβα, Cj), (sαβ , 0ε)) R4

(E0, Ei)−n≤i<−1 (B0
−1 < 0, F i

+(−i+1) > 0) ((rαβ, B0
−1), (sβα, F i

+(−i+1))) R5

(E−1, Ej)1<j≤n (F−1
+1 > 0, Cj < 0) ((rβα, Cj), (sαβ , F−1

+1 )) R6

(E1, Ei)−n≤i<−1 (B1
−1 < 0, Ci > 0) ((rαβ, B1

−1), (sβα, Ci)) R7

(E−1, E1) (F−1
+1 > 0, B1

−1 < 0) ((rβα, B1
−1), (sαβ , F−1

+1 )) R8

(E1, E−1)1<j≤n (B1
−1 < 0, F−1

+1 > 0) ((rαβ, B1
−1), (sβα, F−1

+1 )) R9

(Ei, E1)−n≤i<−1 (Ci > 0, B1
−1 < 0) ((rβα, B1

−1), (sαβ , Ci)) R10

(E−1, E0) (F−1
+1 > 0, B0

−1 < 0) ((rβα, B0
−1), (sαβ , F−1

+1 )) R11

(E0, E−1) (B0
−1 < 0, F−1

+1 > 0) ((rαβ, B0
−1), (sβα, F−1

+1 )) R12

(Ei, Ej)−n≤i,j<−1
(F i

+(−i+1) > 0, B
j
−1 < 0)

or (Bj
−1 < 0, F i

+(−i+1) > 0)
((rβα, B

j
−1), (sαβ, F i

+(−i+1))
or ((rαβ, B

j
−1), (sβα, F i

+(−i+1))
R13

R14

The optimal value recommendation associated to an optimal policy π∗ is a �-
matrix operator ρπ∗ that gives, for each state

[
Ei

αβ

]�

and optimal action

π∗
[
Ei

αβ

]�

=
[
Ai

αβ

]�

, partial definitions of recommended exchange stages, con-

sisting of �-matrices whose elements in symmetric positions are either
(
rαβ , Ai

αβ

)
and

(
sβα, Aj

βα

)
, or

(
sαβ , Ai

αβ

)
and

(
rβα, Aj

βα

)
, where (rλδ,W ) means the real-

ization, by the agent λ, of a service with investment value W < 0, and (sδλ,W ′)
means δ’s satisfaction with interval value W ′, for receiving the service. The opti-
mal value recommendation ρπ∗ , corresponding to the the optimal policy shown in
Table 4, is partially sketched in Table 5.

Finally, the equilibrium supervisor has to decide which types of exchange
stages (I or II) should be recommended. This is done by the analysis of the
virtual results from the points of view of each pair of agents α and β (see (6)):
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(E+, E-)

(E+, E0)

(E 0, E0)

(E 0, E+)

(E+, E+)

 (E -, E+)

(E 0, E-)

 (E -, E0)

T1 or T3

T2 or T4

T1 or T2 or T3 or T4

T1 or T3

T2 or T4

T2 or T4

T1 or T3

T2 or T4

(E-, E-)  T2 or T4

T1 or T3

T1 or T3

Fig. 2. Effects of stage and optimal value recommendations (simplified diagram)

- If vαβ > 0, then α is able to charge β the credit for services previously done.
In this case, an exchange stage T 1 of type IIαβ should be recommended .

- If vβα > 0, then it is the case that the agent β can charge α the credit for
services previously done, indicating that an exchange stage T 2 of type IIβα

should then be recommended.
- If vαβ ≤ 0, then the agent α does not have any credit to charge α. There-

fore, the service done by the agent β must be spontaneous. In this case, an
exchange stage T 3 of type Iβα should then be recommended.

- If vβα ≤ 0, then the agent β does not have any credit to charge β, resulting
that an exchange stage T 4 of type Iαβ should then be chosen.

Stage recommendations and their combined effects with the optimal value
recommendations are sketched in the simplified state transition diagram shown
in Fig. 2. The dot lines represent alternative paths that were not considered as
optimal recommendations since they may seem unfair according to social rules.

3.5 Analysis of the Stability of the Model

The analysis of the stability of the model is concerned with the reachability of
the terminal state in terms of number of steps that are necessary to achieve
the equilibrium whenever it is perturbed. For that, we consider only the case
in which the agents always follow the recommendations given by the equilibrium
supervisor. We show that, even in this favorable case, the decision process is a
non-trivial one, due the qualitative nature of exchange values and to the restric-
tions imposed by the definition of exchange, that always requires a service to be
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done in any exchange stage. However, we show that under some conditions, it is
always possible to have the system equilibrated in at most four steps.

Let Mτ = (mτ
αβ ,mτ

βα)� be the material results of a social exchange process
performed by the agents α and β, at step τ . For a given tolerance ε, equilibrium
supervisor accuracy κn

L
n , and a reference value s, the following results hold:

Proposition 2. (i) If m0
αβ ∈ E−1

s and m0
βα ∈ E1

s , then the system achieves
the equilibrium in one step if and only if 1 < κn

ε ≤ 3. (ii) If m0
αβ ∈ Ei

s, with
1 < i ≤ n, then it is possible to get mτ

αβ ∈ E0
α in at most τ = 2 steps if and only

if 1 < κn

ε ≤ 3. (iii) If m0
βα ∈ Ei

s, with −n ≤ i < −1, then it is possible to get
mτ

βα ∈ E0
β in at most τ = 2 steps if and only if 1 < κn

ε ≤ 3. (iv) If m0
αβ ∈ Ei

s,

with 1 < i ≤ n and s+ 2i+1
2

L
n −ε ≤ mid

(
m0

αβ

)
≤ s+ 2i+1

2
L
n +ε, then m1

αβ ∈ E0
α.

It follows that an individual transition from Ei, with 1 < i ≤ n or −n ≤ i < −1,
to the equilibrium can be done in at most two steps (Ei �→ E1( or E−1) �→ E0).
However, in any interaction between two agents, combined transitions departing
from a state (Ei

s, E
j
s)� or (Ej

s , Ei
s)

�, with 1 < i ≤ n and −n ≤ j < −1, may
result in a state different from (E1

s , E−1
s )�, (E−1

s , E1
s )� or (E0

s , E0
s )�. The worst

case is when the system is in the state (Ei
s, E

j
s)�, with −n ≤ i, j < −1, since two

simultaneous positive compensation actions are not allowed. In this case, the
optimal recommendation (Table 5) leads the agents to equilibrium in at most
four steps, by one of the following transitions:

(Ei, Ej)�
−n≤i,j<−1

R13�→ (E1, Ej)�
−n≤j<−1

R7�→ (E0, E−1)�

R12�→ (E−1, E1)� R8�→ (E0, E0)�

(Ei, Ej)�
−n≤i,j<−1

R14�→ (Ej , E1)�
−n≤j<−1

R10�→ (E−1, E0)�

R11�→ (E1, E−1)� R9�→ (E0, E0)�.

4 Conclusion

We proposed a model, based on Interval Mathematics and Markov Decision Pro-
cess, for the self-regulation of exchanges in multi-agent systems, using exchange
values and social rules to structure the self-regulating mechanism.

We note that the work presents just a mechanism for the establishment of self-
regulation. Motivations for adopting it are not contemplated in the mechanism
itself: agents should find in other grounds the motivation for such adoption.

Immediate future work will be concerned with the case of an equilibrium
supervisor that is not able to fully determine the material balance of social ex-
change processes with complete reliability (i.e., it is not allowed to know all the
exchange values of the two agents). In this case, a partially observable Markov
decision process (POMDP) shall be considered (see, p.ex., [10]), since the equilib-
rium supervisor shall be able to make external observations (also probabilistic)
to help him to decide about the recommendations.
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Further future work will deal with the internalization, in each agent of the
system, of the model decision process introduced in the paper, so that the
mechanism of exchange values-based social control that it supports can be per-
formed in a decentralized way. It is expected that such decentralized social
control mechanism can be modelled as a qualitative version of the Multiagent
MDP [11].
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Abstract. In this paper we propose a new approach to share critical
resources through self-organized coordination. Our approach addresses
two levels : first, it allows the expression of agents needs in terms of
resources occupancy (getting/leaving a resource) with respect to agents
objectives; second, it allows to find a global resources exchange scheme
between agents, fitting the agent needs thanks to a negotiation process.
Negotiation between agents is held in a decentralized way and allows to
produce complex contracts. The underlying protocol is applied to sched-
ule manufacturing tasks on a set of critical machines.

Keywords: critical resources sharing, self-organization, emergent be-
havior, swarm intelligence, manufacturing scheduling.

1 Introduction

Sharing critical resources is a large scale problem. It is well represented in het-
erogeneous domains like the management of critical communication nets, supply
chains scheduling, processes scheduling, etc. Providing a solution has to take
into account dynamic aspects of the problem expression in its domain: how
to adapt the current solution face to disturbances ? In this paper we propose
a new protocol to share critical resources through self-organized coordination.
Our approach addresses two levels: first, it allows the expression of agents needs
in terms of resources occupancy (getting/leaving a resource) with respect to
agents objectives; second, it allows to find a global resources exchange scheme
between agents, fitting the agent needs thanks to a negotiation process. Ne-
gotiation between agents is held in a decentralized way and allows to produce
complex contracts. In section 2, we describe our general problematic. In section 3,
we present existing approaches and motivate our choice. We identify drawbacks
and lacks for the selected approach, in the context of very constrained situa-
tions. To enhance the selected approach capability for the constrained sharing
of critical resources problem we propose a new model in section 4. We illustrate
our model by some simulations in section 5 and present first results, before con-
cluding the paper with a discussion and the presentation of our future works
in 6.
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2 Presentation of the General Problem: The Sharing of
Critical Resources in a Constrained Environment

The problem of critical resources sharing is considered in a repairing context:
every time a disturbance occurs one has to adapt the current solution. We choose to
manage the resources use in advance. Let’s us consider a set of agents that have to
be alloted on a set of critical resources. Assignment of agents on resources must fit
both the problem constraints and the agents objectives. For example, in a schedul-
ing problematic agents should respect a chronological order (constraints) and a due
date for their allocation (objective).

The described problem seems to be very difficult . The solutions search space
size is very important. Each agent could acquire several resources and each re-
source could be allocated to several agents. In this paper, we consider different
approaches to address this problem. We then observe lacks of multi-agents based
approaches in adequately tackeling the resource sharing problem.

3 Addressing This Problem: A Contextual Approach

3.1 Dimensions Through Which the Problem Could Be Addressed

To address this problem one has to answer to three main questions:

– how to organize the covering of the set of potential solutions ?
– how to reduce the complexity ?
– how to organize the solving mechanism ?

Moving mode through the search space. The way to cover the search space
could either be achieved through a predefined mode, where one can compute
the set of possibilities in a pre-stated order, or through a non pre-established
order when the number of possibilities could not be estimated or characterized
a priori.

Guides to cover the search space. An efficient covering of search spaces is a
well known problem in optimization. Two main approaches allow to reduce the
complexity of the exploration process.

First, we could reduce the size of the search space by using domain specific
knowledge. This process is called branch cutting, in a branch and bound ex-
ploration mode and some heuristics could efficiently reduce the search space
exploration. One can use knowledge based approaches for specific application
domains. Using some mathematical analysis can prove the lack of relevance for
sub-parts of the space of search.

Second, we can take advantage of a process that manifests a naturally good
behaviour. With approaches known as evolutionary , such like ant colonies op-
timization, simulated annealing, neuronal nets, immune-based systems, genetic
algorithms, particle swarm optimization, etc.
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Centralized versus decentralized. The set of possible guides to cover the
search space hardly depends on the selected organization structure:

– centralized: there is only one active process. It controls all the data, it makes
all the decisions in a centralized way.

– decentralized: several processes act separately. They have to cooperate in a
decentralized way.

3.2 Contribution for the Coordination

An adequate approach. Our study domain is concerned by complex systems
approaches. For such systems, composed of a set of interrelated entities, each en-
tity’s evolution impacts on the other entities evolution. Dynamics of such systems
is non linear due to retroactives interactions making the system global behaviour
hard to understand and control. The scheduling repairing problem exhibits some
characteristics of complex systems. Indeed, for this problem, repercussions of each
change occurring in the scheduling repairing process, are propagated through the
whole system (see figure 7). The question is thus, how to control the system face
to disturbances? The Multi-agents paradigm provides an interesting tool to repre-
sent this problem. Each agent embodies a system entity, and interact with the set of
other agents in order to emphasize good global characteristics for the system. This
challenge is not easy but appears almost natural: rather than finding efficient ways
to reduce the time consuming for the problem solving, we attempt to understand
the characteristics of the problem behaviour and then to lead the system evolu-
tion. In our approach, the current solution evolves through a non pre-established
covering in a decentralized manner.

Description of the proposed approach. Our approach is characterized by
the following:

– Self-organization: Process through which the organization of a system spon-
taneously increases, without external control. This organization evolves on
the opposite way of the system’s entropy increasing. Energy inside the sys-
tem is continuously dissipated through the system’s components to maintain
some organizational structures.

– Stigmergy: Indirect mode of communication, mediated by the environment.
This principle has been first introduced by Grassé [5], while studying the
behavior of social insects. For our problem, we use stigmergy as a mean for
agents to elaborate complex contracts in a fully decentralized manner.

– Eco-resolution: Paradigm first introduced by J. Ferber in 1989 [4]. It bases
the resolution of a problem on a mechanism of a state space search, by
reactive agents guided by a satisfaction fitness function. We use the eco-
resolution as the mean to achieve self-organization. Each agent tries to get
a set of resources fitting its needs.

Known protocols for multi-agents negotiations. In the following, the de-
scribed approaches are generally concerned by our application domain (schedul-
ing). Nevertheless, the principle exhibited by these ones are not limited to a
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specific domain and fit the general problem of constrained critical resources
sharing. For the scheduling problem, we distinguish two kind of approaches:

– to direct the products, covering the production system, at each their manu-
facturing step, without any prediction of the system capacity in the course
of time.

– to anticipate the covering for products. To address this problem, we consider
more complex contracts and additional constraints.

The second one is much difficult to realize but in [2], we show that this ap-
proach allows making decision in a less blind manner, in order to respect con-
straints such as the respect of due dates, congestions reduction, etc.

In [3], objects are dispatched over critical resources on which they consume a
part of time. This approach which improves the system performances, reproduces
the labor division in social insects. The paper authors explain how it can be useful
to represent the problem in the course of time to make decisions less blindly.
However, this is not yet yet achieved in the proposed approach. What are the
difficulties that prevent the anticipation of allocations ? In [2], blinded decision
can decrease the solving process performances. Each time an agent succeeds in
changing its assigned resource, it disturbs the system equilibrium. Decentralized
approaches are susceptible to chaotic behavior and sub-optimality. In [8] we show
how the agent activity can slow down the general solving process when it is not
controlled for resource sharing problems. This is the first subject of interest for
our problematic.

[11] defines the contract-net protocol as a process of decentralized negotia-
tion, for tasks allocations on critical resources, based on the sending of a call for
proposals/solutions. It is useful for a consumer agent to request supplier agents.
However, is this protocol appropriated when it is necessary to establish contracts
between several agents at the same time in a complex context ? How to represent
the complex characteristics of the problem with a two-by-two exchanges based
protocol ? This will be the second subject of interest for our problematic. Gen-
erally, one use the Contract-Net protocol to assign product to machines in the
course of time. Doing so, it is possible to use heuristics to improve the system
performance. In [12] and [13] the authors consider some cooperative cues between
products competing for an assignment to increase the system performance.

To tackle much complex problems considering more constraints (for instance,
to make a schedule by anticipation), it is necessary to adapt the Contract-Net
protocol. in [10], a generic negotiation model is presented. Each agent negotiates
in a decentralized way so as to obtain a set of critical resources. Rules define the
set of solutions to explore. We notice that for this negotiation model, conflicts
between two negotiations are not considered (the negotiation with the highest
priority wins and blocks the other ones). This negotiation model corresponds to
a search space exploration with backtracking when a rule fails, and using a rule
that determines the next rule to apply. Nevertheless, the proposed approach
could not address the issue of: how to elaborate complex contracts in a global
negotiating context ?
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Some studies are based onparallelising negotiations between agents. In this case,
the issue is: how could agents increase their capacity to negotiate with several other
ones at the same time ? Then, one has to detect the failure for some agents to par-
ticipate in a negotiation process, to prevent agents to be blocked, etc ([1]). In [7],
agents attempt to make flexible contracts, in order to make contracts evolve during
the negotiation process. These approaches are applied to e-commerce.

In all these works on Contract-Net based negotiations, enhancement has been
done on the protocol itself rather than on the approach to address complexity.
The question is thus: Does the Contract-Net architecture satisfy the problematic
requirements ?

The process described in [6] is based on a self-organizing behaviour. Local
interactions between agents allow the obtention of a global problem solving.
However, the perceived improving must be significant when an agent changes its
resource using. Indeed it blindly impacts on the overall system,because of the
complex characteristics of the problem.

Difficulties and propositions. We exhibited in 3.2 two subjects of interest
for our problematic. 1) The agent activity can slow down the general resolving
and 2) the contracts elaboration should be done in a global negotiating context.
How to tackle them efficiently ?

First, it is not easy to make the solution evolve in a decentralized way for con-
strained problems. The global solution improvement in decentralized systems are
based on local decisions making. For instance, an agent can change its plans to
enhance its profit. This kind of local decision propagates perturbations through
the whole system which has to reach stability again. during a processes of re-
sources acquiring/realizing by a set f agents, at the end of a moving sequence,
we can evaluate the profit or the loss of the agent activity in the system. As
the search space covering is not pre-established, if the solution quality decreases
there is no way to go back. The more better states are local the more it is hard
for the system to efficiently get around a state. For the sharing resource prob-
lems, bad moves are sanctioned by a high decreasing in the solution quality.
Good solution states are insulated and very complex to meet. Then, we propose
to elaborate complex contracts in a dedicated environment in order to validate
contracts in a global context. Then, we can evaluate the impact of a contract in
advance and prevent mistakes. We propose to centralise the contracts validation.
Nevertheless, we propose to fully decentralize the contracts elaboration process.

Second, it’s difficult to elaborate complex contracts among agents. There is
a very important set of possible contracts. It is necessary to consider relations
between contracts under construction. Note that none of the studied approaches
fully express relations between contracts to elaborate. To do so, we need a specific
architecture to represent these relations. We propose to elaborate contracts using
a stigmergic negotiation. Doing so, each agent perceives it’s local negotiating
environment (the agreements of partners agents, etc.) and expresses it’s needs
to other agents. This process prevents the latency times during the negotiation,
and allows to easily represent relations between contracts and to make them
evolve, etc.
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4 The Coordination Model Proposed

In this section, we present a generic model of coordination. Relying on it, we
attempt to enhance the relevance of moves in the search space. In [9] Parunak’s
team shows that moderating agent activity results in increasing the system
performances. Indeed, the agent activity can prevent the stabilization of the
multi-agent system on a good quality solution. Instead of reducing this ac-
tivity, we propose a model to check the relevance of each agent activity. Our
model allows to foresee both positive and negative aspects of each agent action.
In this paper, we focus on how to elaborate an efficient collaboration between
agents. The described model will be applied in real-time problems for further
works.

In 3.2, we described two drawbacks in the proposed approach for the sharing of
critical resources. First, we show that the system has not to decide blindly during
its evolution. Thus, each agent move will be validated in a global context before
being effective. Second, we underline the difficulties to elaborate collaboration
between agents. We choose to use reactive behaviors inspired from insect societies
allowing local and global collaborations between agents. The global collaboration
pattern will have to emerge instead of to be a priori stated. In 4.1, we describe
the agent model. In 4.2, we present the way to elaborate collaborations, in 4.3
we explain how they are validated or not by the system.

4.1 The Agent Model

For our problem, an amount of critical resources is assigned to each agent, with
respect to the agents objectives. To do so, an agent can exchange some of its re-
sources with other agents. The described model acts at two levels: a collaboration
level where plans are elaborated and an application level where the elaborated
plans are applied.

On the application level, the real time situation of agents is represented: what
are their associated part of critical resources ? what are their current objectives ?
This level represents the state of the system and it is a part of the problem search
space.

On the collaborative level is represented, the capacity for agents to exchange
parts of resources, to collaborate in order to get a global satisfaction. The aimed
resolution process is represented at this level.

4.2 The Collaboration Principle

In this section, we study the way by which collaborations are formed. A collab-
oration consists in an exchange of critical resources between agents. We focus
on local collaborations, that can lead to global cooperations described in 4.3.
The global cooperation constitutes a global complex contract. Local potential
collaborations provide raw material for the global collaboration.

Intentions communication. Each agent has to communicate its intentions to
the collaborative level. We define two kinds of intentions:
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– Intention to get a resource: an agent can associate to this intention its pref-
erence based on its associated satisfaction.

– Intention to leave a resource: an agent indicates that it could leave its actual
resource to improve the system (non selfish behavior).

An agent expresses only one intention for each of the concerned resources.
However, it can express several intentions of getting, for each of the resources
it needs. These marked intentions are used for the elaboration of local potential
collaborations.

Local potential collaborations elaboration. Local collaborations are cre-
ated by a process from the collaborative level while using the marked intentions.
This process regularly associates complementary intentions but do not evaluate
their relevance. For instance, in Figure 1, intentions to get and to leave resource
R1 from A1 and A2 are associated in a simple local collaboration.

The local collaboration pattern can be more complex. For instance, if a re-
source can be shared by several agents, a collaboration can be formed by N
agents leaving the resource and M agents getting it. That is the case for the
scheduling problem.

The set of local collaborations so considered constitutes the raw material
for the global collaboration. Agents are committed in contradictory potential
collaborations. They could not respect all their potential commitments at the
same time. In Figure 2, A1 can’t give its leaving resource to agents from Collab1
and Collab2 at the same time. In the same way, it doesn’t intend to get more
resources that it needs to be fully satisfied. Our approach easily accommodates
if all constraints are not met during the resolution process. It allows to find a

A1 A2R1

Intend
to leave

Intend
to get

Collaboration

Fig. 1. Collaboration

leaving getting

OR ORA1

Collab1

Collab2

Collab3

Collab4

Collab5

Fig. 2. Collaboration network
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solution on a larger range, using a rich raw material representing a very big space
of search. Other approaches attempt to elaborate fully coherent collaborations,
which is very difficult to achieve. Since there is a wide space to explore, we
represent the solution in a collaborations network as follows.

4.3 Dynamic Collaborations Net

Once the collaboration net is elaborated, a process inspired from the swarm intelli-
gence carries out the final plan to apply to the application level. The two processes
(to elaborate the net and to apply a resolution process on it) could be realized in a
parallel way thanks to the decentralized aspect of the negotiation process.

Collaborations general principle. We attempt to make a global collabora-
tion, that has to maximize the amount of respected constraints, emerge. The
objective of the collaborative level is to enhance the coherence of the agent re-
source exchanges. We allow the temporarily constraints violation. We represent
them as disturbances that could be propagated on the application level. The col-
laborative level must gradually provide plans that reduce the amount of agents
that doesn’t meet their objectives. However, the most the emerging process is
powerful, the less disturbances are propagated on the application level. By using
the swarm intelligence, we attempt to cope the complexity of the problem. The
stigmergic negotiating process has to give good characteristics for the coordina-
tion of local and global behaviours thanks to the stigmergic communication.

In Figure 3 is represented the result of collaborations evolving in the dynamic
net. Some collaborations are validated by the system, some are not.

A1

A2

A3

A4

A5

A6

A7

A8

A potencial collaboration

An  accentuated collaboration

Fig. 3. Collaboration network

Global sense based on local activity of agents. Since we attempt the
emerging process to fit the system objectives, the resolution process can’t be
local. The resources are shared on the overall system. Local resolutions have
to influence global evolutions. Note that the opposite is true because global
evolution is based on local ones. Using a decentralized system, the emerging
organization results from local interactions.

An emerging collaboration comes out from the collaboration net. For exemple,
in Figure 3 a part of the result of the emerging organization is represented.
The path formed by continuous arrows constitutes a persistent pattern. It can
influence the global evolution. Of course, it can disappear in case it doesn’t make
sense in a more global context.
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5 Simulation Results

In this section, we do not simulate the global resolution for the generic problem
described. We only attempt to underline that simple local simple behaviours can
show up efficiently the global collaboration hidden in a pre-established network
of collaborations. We consider that each agent attempts to get nbGet resources
from its getting collaborations and to leave nbLeave ones from its leaving col-
laborations. We only report resolvable problems.

5.1 Implemented Behaviours

Representation and perception of the collaborations. We assign a pher-
omone to each collaboration. Pheromone value evolves according to a confidence
value, attributed by agents to the collaboration.

Using its local vision, each agent evaluates the state of a collaboration:

– natural collaboration: agents sort their collaboration lists thanks to their
perceived qualities (resulting from their pheromone values). There are two
sorted collaboration lists: one for the getting collaboration (getting resource
collaborations), one for the leaving collaboration (leaving resource collabo-
rations). A collaboration appears natural for an agent if it takes place in the
beginning of its associated list, fitting the necessity to get a resource or to
leave a resource for an agent (nbGet ≥ position or nbLeave ≥ position).

– conform collaboration: a collaboration is conform if it is natural for all its as-
sociated agents (for the simple topology used, local collaborations are always
between two agents).

Agent activity. An agent acts when it is unsatisfied. If an agent doesn’t get
enough conform getting collaboration, it acts in a getting way. If it doesn’t get
enough conform leaving collaboration, it acts in a leaving way.

Reinforcement for a collaboration type. Reinforcement can be done for the
getting collaboration and/or for the leaving collaboration. An agent tries to rein-
force the pheromones associated to the collaboration of the selected collaboration
type. For each collaboration, a reinforcement is transmitted if Random(0, hopeTo
BeTransmit) > threshold. Lets us consider the definition of hopeToBeTransmit
for a collaboration:

– If the collaboration is natural: hopeToBeTransmit = NaturalBase+
Random(0, NaturalHazard).

– If the collaboration is not natural: hopeToBeTransmit = NonNatural
Base + gapConsideration ∗ gap

threshold, hopeToBeTransmit, NaturalHazard, NonNaturalBase, gap
Consideration are some parameters. gapConsideration corresponds to the per-
centage (by using the value of pheromones) between the current collaboration and
the weaker natural collaboration for the type.

Evaporation process. Pheromones values undergo a regular evaporating
process.
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5.2 Results

Context. For these first results, we consider the capacity for the system to
reach a solution. We measure the number of activity periods before the global
satisfaction of agents. For each activity period, agents are called in a random
order so as to realize their reactive behaviour:

– perceiving process: perception of the associated collaboration pheromone
values. Computing of their states (natural or not). The agent asks adjacent
agents to define the conformity of collaborations. It computes its satisfaction
from the obtained results.

– acting of the environment: if an agent is unsatisfied, it acts for each collab-
oration type that must be reinforced.

Coordination capacity on a small perimeter. For this problem, the solution
is unique (Figure 4). Each collaboration except plotted collaborations must be
confirmed by the system. The system reach the solution after 3.7 periods of
activity for agents (average value for 1000 executions, standard deviation: 2.5).

1 IN 2 OUT

2 IN 1 OUT 2 IN 1 OUT

1 IN 2 OUT

Fig. 4. A first problem

Impact of the size of the coordination. For the problem 5, we attempt
to measure the resolving time evolving in front of the exponential increasing of
the space of search. As a matter of fact, the size of the search space is equal
to 2amountofcollaboration. Each collaboration can be validated by the system or
not. In spite of the simple form used for the scalable problem (a circle), the
global coordination problem is not easy for a system that doesn’t knows the
circle notion. Then, we must consider that the behaviour could react in the
same manner for other coordination forms.

The system must invalidate by half the set of potential collaborations. There is
only two solutions for oddproblems.Weadd two solutions for evenproblems: agents
can accommodate locally two by two. Even if the cycle activity measure increases
exponentiallywith theproblemsize, the coordination canbe achieved in reasonable
time for the studied problems (chart 6). We don’t think that a centralized approach
could easily solve the problem without adding specific knowledge about the circle
notion. It is difficult to cope with the great size of the search space efficiently.

We applied a genetic optimization on the parameters presented in 5.1. This al-
lowed to divide by more than three the presented resolution time for the scalable
problem. It made the resolution time quasi proportional to the problem size. We
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1 IN 1 OUT FOR EACH AGENT
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Fig. 5. A scalable problem
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Fig. 6. Impact of the size on the coordination

suspect these results to be problem specific (specific to the set of predefined prob-
lems on witch we applied the genetic optimization). In ongoing works, we will study
the impact of the net topologie with respect to the resolution complexity, in order
to generalize these results. Although the genetic optimisation can increase or re-
veal some beneficial behaviours, we still need to find the appropriated local agent
behaviours first. We consider the genetic optimisation just as a simple tool.

First conclusion. The described experiments constitute the first tests on the
system behaviour. We have measured the performance of the system under two
specific problems that may not represent all the possible ones. Nevertheless, the
first results seem promising. The indicated convergence characteristics seem to
be interesting but we are going further to validate it.

6 Industrial Application

6.1 The Considered Problem: Industrial Scheduling

Industrial scheduling is a hard problem. First, many of the scheduling parameters
such as processing times, materials getting times, resources availability, etc, are
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subject to uncertainty. Second, it is hard to explicitly define the objective for
the production system. It often results from opposite objectives, that may evolve
over time.

These two aspects of the problem complicate the use of classical computing
approaches like Operational Research tools. To represent the objectives at a
bottom level (inside the agents) can be much useful.

6.2 Adequateness to the Sharing Critical Resources Protocol

Resources consuming. For the manufacturing problem, machines represent
resources, products represent resource consumers. Each machine provides an
availability to be shared between products (temporal planning representation).
Products cover the production system, they have to find a place on machines for
each one of their tasks in a chronological order. Each task is represented by an
agent searching for a suitable allocation.

Objective expression. In order to fit the problem definition, we distinguish
two parts in the agent task objectives:

– get a robust place face to the uncertainty of parameters, according to the
due date: the precise definition of this objective is outside the scope of this
paper. This consists in getting a place allowing to move locally without to
propagate a disturbance.

– get a place corresponding to specific preference: for instance, to choose a
specialized machine.

Then, each time an agent formulates an intention to the collaborative level, it
provides associated satisfaction based on its objectives. We note that the prefer-
ence of agent for part of resources could easily be expressed in the implemented
reactive behaviour. We could consider the preference of the agent to calculate
hopeToBeTransmit for the pheromone reinforcement process.

A real need to coordinate the moves in the search space. Product tasks
regularly change their place to increase their satisfaction face to disturbances.
Moving in a blindly way results in a perturbation applied on the system as an
unknown factor (Figure 7). Placed tasks have to shift forward or backward on
machines plannings in order to accommodate the arriving tasks. Even the de-
parture planning of a moving task creates disturbances. Indeed, The resulting
free space must be filled in order to maximize the use of the associated ma-
chine. These shifts may produce broken constraints. The task forced to move
may not respect the chronological order of tasks for the associated product
anymore. In this case, the constraint propagates by the product tasks to the
system, and some of those tasks have to find a new place. In Figure 8, we show
how an effective collaboration can be applied without to propagate any distur-
bance. This could be done by the validation of contracts in a global context,
and using an adequate process to consider links between contracts through the
resolution.
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Machine 1

Machine 2

Left Shifthing

Rigth Shifthing

Fig. 7. Moving impact of blindly activity

Machine 1

Machine 2

No disturbances

Fig. 8. Moving impact of collaborative activity

7 Conclusion

In this paper, we have described the critical resources sharing problem as a very
complex one. We have proposed an approach based on decentralized reactive be-
haviours and have discussed their fitness to this kind of problems with respect to
other classical optimization approaches. In order to reduce the resolution time
we have underline the need for an efficient coordination of the agent activity.
We have pointed some limitations and drawbacks of some existing coordination
approaches, and motivated the proposal of a new generic protocol, based on stig-
mergy. We have presented some simulations to illustrate our approach and given
some first promising results. Before concluding, we have presented an instance of
our problematic through an industrial application domain, which is scheduling
under disturbances. For this domain, there are relatively few reports about the
production of an anticipated planning using reactive behaviours. We think that
this limitation is due to the lack of capacity to consider complex characteristics
between contracts during the resolution process with known protocols.
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d’interprétation du comportement des Termites Constructeurs. Insectes sociaux,
6:41–80, 1959. In French.

6. Hadeli Karuna, Paul Valckenaers, Constantin Bala Zamfirescu, Hendrik Van Brus-
sel, Bart Saint Germain, Tom Holvoet, and Elke Steegmans. Self-organising in
multi-agent coordination and control using stigmergy. In Giovanna Di Marzo Seru-
gendo, Anthony Karageorgos, Omer F. Rana, and Franco Zambonelli, editors, En-
gineering Self-Organising Applications, First International Workshop, ESOA 2003.
Melbourne, Victoria, July 15th, 2003. Workshop Notes, pages 53–61, 2003.

7. Nguyen, T. D, and Jennings. Managing commitments in multiple concurrent nego-
tiations. Journal Electronic Commerce Research and Applications(Issue 4), 2005.

8. H. Van Dyke Parunak, Sven A. Brueckner, Robert Matthews, and John Sauter.
How to calm hyperactive agents. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 1092–1093. ACM
Press, 2003.

9. H. Van Dyke Parunak, Sven A. Brueckner, Robert Matthews, and John Sauter.
How to calm hyperactive agents. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 1092–1093. ACM
Press, 2003.

10. Alain Taquet Philippe Mathieu. Une forme de négociation pour les systèmes multi-
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Abstract. Large systems of agents deployed in a real-world environment face 
threats to their problem solving performance that are independent of the com-
plexity of the problem or the characteristics of their specific solution mecha-
nism. One such threat is the degrading of the quality of agent coordination 
mechanisms when faced with delays in the flow of critical information among 
the agents introduced by communication latencies. In this paper we demonstrate 
in a simple model of locally interacting agents that the emerging system-level 
performance may degrade very suddenly as the rate of individual decision mak-
ing increases against the availability of up-to-date information. We present re-
sults from extensive simulation experiments that lead us to select a locally  
accessible metric to adapt the agent’s individual decision rate to values that are 
below this phase change. Given the generic nature of the coordination mecha-
nism that is analyzed and the information-theoretic metric, the adaptation 
mechanism may increase the deployability of large-scale agent systems in real-
world applications. 

1   Introduction 

In many real-world applications (e.g., manufacturing control, intelligent sensor  
networks, fine-grained robotics) multi-agent systems comprise many entities with 
sometimes severely restricted resources (i.e., processing, memory, bandwidth). These 
entities often exchange information to coordinate their individual activities and to 
achieve meaningful system-level behavior. 

The interactions of the agents transmit information that influences the agents’ deci-
sion processes. Thus the performance of the individual agent as well as the whole 
agent system directly depends on the timely and accurate flow of information. But, in 
systems of resource-limited agents this requirement may not be met since communi-
cation requires time and may be noisy. 

A simple graph-coloring model enables us to explore systematically the impact of 
the speed of the information flow on the quality of the decision processes in a large-
scale agent system. The complex emerging dynamics of the decision processes  
include a robust phase change in the system performance driven by the latency in in-
dividual communications. Knowing the location of this phase change is very impor-
tant in the tradeoff between the speed in which a solution is achieved by the system 
and the quality of the solution. 
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In deployed systems the communication latency is determined by many factors and 
it may vary over time as well as over the space inhabited by the agents. Furthermore, 
we seldomly are in a position to control the speed of the information flow and thus 
our solution-time vs. solution quality tradeoff has to be determined by the rate of the 
individual agent’s decision process. 

Based on the analysis of the phase structure of the system’s performance and its re-
flection in metrics that are accessible to the individual agent we present a generic  
local control mechanism that permits the agents to determine their currently optimal 
decision rate to achieve a good solution in the shortest time possible. Our local control 
mechanism induces meta-level coordination in that it observes the performance of the 
system through local indicators and guides the individual agent activity for the greater 
good. These are the basic characteristics of the cognitive functions of introspection 
and learning, realized in our case through emergent sub-symbolic reasoning. 

The remainder of this paper is structured as follows. In section two we present our 
agent-based graph-coloring model. In section three we discuss our experimental ap-
proach and a software infrastructure that we developed to explore large regions of a 
model’s parameter space automatically. In section four we explore the complex dy-
namics and the emergent phase structure of the graph-coloring model. In section five 
we introduce a generic local control mechanism that realizes system-level introspec-
tion and learning and we demonstrate the improvement of the performance achieved 
in the graph-coloring example. We conclude in section six. 

2   Distributed Graph Coloring 

The graph-coloring problem is a fundamental challenge problem to which many other 
coordination tasks may be reduced. In its general form it seeks to assign one color out 
of a globally fixed set of size G to each node in an undirected graph so that the num-
ber of edges that connect nodes of the same color is minimized. 

We directed our attention to graph-coloring in a multi-agent coordination context 
in the DARPA ANTS program, where the team from Kestrel Institute explored the 
dynamics of a distributed sensing and tracking system controlled in real-time by 
agents that are severely restricted in their processing and communication capabilities 
[8]. In the application, an agent corresponds to a small robotic radar sensor that can 
light one of three segments of the sky at any time. It takes at least three nearby sen-
sors to focus on the same region of the airspace above to track an object. The graph-
coloring problem in this case maps nodes to regions in space in which at least three 
sensors overlap and edges connect regions that share the same sensor. The number of 
colors relates to slots in a repetitive schedule of the sensors that need to be coordi-
nated to track objects discovered by at least one sensor. 

Our research in this program was concerned with the general dynamics of distrib-
uted resource allocation. Phrased in this context, each node in the graph represents a 
task, each color represents a resource, and an edge between two nodes (tasks) indi-
cates that a single resource cannot service them simultaneously. Thus, graph-coloring 
models (spatio-)temporal coordination tasks that are very common in multi-agent ap-
plications in general. 
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In this paper we do not present a new approach to solving the graph-coloring prob-
lem. Rather we use the distributed solution algorithm proposed by the Kestrel team to 
demonstrate the impact of delayed information flow on the solution quality and speed. 
Soft, real-time distributed graph coloring [5] assigns an agent to each node in  
the graph that needs to be colored. Thus there are N agents (one for each node in the 
graph) in the multi-agent system and, according to the undirected edges among the 
nodes, each agent has a number of direct neighbors to whom it communicates changes 
of its color. 

In our experiments we typically considered random graphs in which each node has a 
fixed number of neighbors (K). We implemented multiple ways (indexed by the GC pa-
rameter) of sequentially constructing such graphs, each of which resulted in graphs with 
specific characteristics. For instance, in one graph construction mechanism, we ran-
domly distributed the nodes on a unit square and assigned each node those K nearest 
neighbors that did not yet have their complete set of neighbors assigned. This mecha-
nism typically produces graphs that may be embedded in low-dimensional spaces. 

Another mechanism selects randomly among those nodes that have the least num-
ber of neighbors assigned already and connects the chosen one to another of these 
most incomplete nodes. This mechanism tends to yield graphs with a very short char-
acteristic path length. All experiments reported in this paper were conducted with 
graphs constructed by this mechanism, but the observations and conclusions also hold 
for other GC parameters. 

In the chosen graph-coloring algorithm, any agent cyclically decides whether to re-
consider its color choice or not. The so-called activation decision is taken non-
deterministically with a fixed probability, which we call the agent’s Activation Level 
(AL). The randomized activation of the nodes in the graph is intended to (statistically) 
prevent simultaneous color changes among neighboring nodes. 

Figure 1 sketches the basic decision process that a node executes if it is activated. 
At first, taking into account the currently known colors of the node’s neighbors, it 
computes the local Degree of Conflict (DoC) for each available color. The local DoC 
is the node’s main performance metric. For any (assumed or real) color of the node, it 
is the number of neighbors that share this color divided by the overall number of 
neighbors of this node. The agents attempt to solve the coloring problem across the 
graph by individually minimizing this local metric. 

After determining the expected consequences of each available option, the agent 
selects its color in two steps. First, it may reduce the option set depending on the per-
mitted change in the lo-
cal DoC. The “Move-
ment Direction” (MD) 
parameter determines, 
whether only colors that 
improve (reduce) the lo-
cal DoC (MD=”Only-
Up”), colors that do not 
increase the conflict 
(MD=``LateralAndUp”), 
or all colors (MD= 
``Any”) may be selected. 
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Fig. 1. Node A's agent's color selection process 
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The agent keeps its 
current color if no 
color meets the re-
spective constraint. 

In a final step the 
agent selects its new 
color from the re-
maining option set. 
We experimented 
with three different 
mechanisms deter-
mined by the 
model’s ``Color Se-
lection” (CS) pa-
rameter. Either the agent selects the next color randomly from the reduced option set 
(CS=``Random”), or it chooses probabilistically with the individual probabilities in-
versely proportional to the expected local DoC (CS=``Roulette”), or the agent chooses 
randomly only among the colors that promise the largest improvement in the local 
DoC (CS=``Best”). 

If the color that the agent selects is different from the current color, the agent 
communicates the change to all its direct neighbors in the graph. In our model we de-
lay the arrival of the change messages at the neighboring nodes by a globally fixed 
time specified in the “Communication Latency” (CL) parameter. 

Our model also includes a simple noise process. Any node has a fixed probability 
to “fail”. In each cycle, independent of whether the color decision process is activated 
or not, the node may randomly select any color with a probability specified in the 
“Reset Probability” (RP) parameter. 

Table 1 lists all available model parameters that may be varied in the exploration of 
the emergent system dynamics. In the following section three we present a software 
infrastructure that supports a systematic exploration of this parameter space. 

3   Systematic Parameter Sweeps 

Even though the individual decision processes and agent interactions may be very 
simple as they are for instance in the distributed graph-coloring model, formally 
analyzing the complex emergent dynamics of a large system of these agents quickly 
becomes intractable. But it is exactly the dynamics in the large that primarily  
interest us. 

Constructing a software simulation of the respective model and then experimen-
tally exploring selected regions of the model’s parameter space provides a solution to 
this dilemma that is chosen these days by many researchers. But there are many pit-
falls to be avoided when experimenting with complex nondeterministic models with 
large parameter spaces. For instance, the introduction of artifacts by the system’s ran-
dom-number generator has been discussed extensively. Another important issue is 
 

Table 1. Graph-Coloring Model Parameter 

Model 
Parameter 

Description 

N Number of Nodes in Graph 
K Number of Neighbors per Node 
G Number of Colors Available 

GC Mechanism to Construct Random Graph 
AL Probability to Activate Color Decision Process 
RP Probability to Randomly Change Color 
CL Time of Message Transfer to Nearest Neighbor 
MD Constraint on Permitted Change of Local DoC 
CS Mechanism to Select Color from Option Set 
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finding interesting regions in vast parameter spaces while only having limited time 
and computational resources available. We propose an approach to this issue in an-
other paper [2]. 

Another non-trivial problem in following the experimental approach is plain book-
keeping. Mapping out the phase structure of the distributed graph-coloring model re-
quires the setup, execution and analysis of hundreds of thousands of experiments – a 
task that cannot be achieved manually. 

We developed a parameter sweep infrastructure that enables us to explore the dy-
namics of a given simulation model efficiently. The infrastructure automatically sets 
up experiments either through XML configuration files in the file system or through 
JAVA objects directly handed over to the simulation thread. The use of XML con-
figuration files permits us to run individual experiments manually at any time and it 
also allows us to farm out experiments on to any available computer in our network 
that has access to the fileserver. 

After a simulation experiment has been completed success-fully, it stores its results 
in an XML report file in the file system. In any given parameter sweep we may be in-
terested in a number of metrics such as traces of individual agent states or statistical 
measures aggregated over agent populations and many simulation cycles. But in gen-
eral we do not require all possible metrics to be recorded at all time. Therefore we 
specify with the configuration of a parameter sweep, which of the measurements 
should be reported. 

Reporting our metrics in XML format enables the parameter sweep infrastructure 
to aggregate the results of many experiments efficiently into one report whose 
structure reflects the dimensions of the region of the parameter space that had been 
explored. Additional filters applied after the completion of the sweep translate the 
XML file into any format required by our chosen analysis software. We currently 
use Mathematica, Microsoft Excel, and specifically tailored JAVA programs to ana-
lyze and graphically display our experiments such as those reported in this paper. 

The integration of the parameter sweep infrastructure with a new simulation model 
is very simple. We configure a parameter sweep using a meta-level XML setup file, 
which specifies which parameters are to be “swept” and how they are communicated 
to the underlying simulation software. We also separate the collection of our report 
data from the simulation itself similar to the Swarm package’s Observer Swarm con-
cept [7]. 

We have used our parameter sweep infrastructure in several research projects to 
explore the dynamics of agent systems. Currently, it supports experiments with an 
agent-based supply-network simulation implemented in the Swarm package, a JAVA 
implementation of a distributed formation flying mechanism for robotic planes, and 
the emergent dynamics of a swarming path planning algorithm.  

4   Information-Driven Phase Changes 

The dynamics of the distributed graph-coloring system may be explored in many di-
mensions and they are reflected in various local and global metrics. In the following 
we map the general layout of the dynamics along the major dimensions and then fo-
cus on the sudden transition from good to bad performance. 
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4.1   Parameter Space 

Table 1 lists the parameters of our agent model of distributed graph coloring. These 
parameters may be grouped into problem parameters, solution parameters, and envi-
ronmental parameters. 

Problem parameters specify the particular graph-coloring task. These include the 
number of nodes (N), their arrangement into an undirected random graph (K, GC), 
and the number of colors available (G). Varying these parameters while keeping the 
ones of the other groups fixed explores the algorithm’s performance under various 
problems. 

Solution parameters configure the operation of the distributed graph-coloring algo-
rithm. This group includes the permitted change of the local DoC (MD), the method 
of selecting a new color (CS), and the average decision rate of a node (AL). Varying 
these parameters explores the performance of different classes of the solution ap-
proach for the same problems. The parameters of the solution algorithm are the ones 
that need to be adapted in the deployment of the agent system to solve a certain range 
of graph-coloring problems in a particular environment. 

Environmental parameters define the conditions under which a particular solution 
mechanism attempts to solve a given problem. We model the delay in communication 
among the nodes (CL) and the rate of node failure (RP). Exploring these dimensions 
helps us understand the impact of a particular deployment scenario on the solution of 
a given coordination problem. 

4.2   Metrics 

The agents in the distributed graph-coloring problem interact locally to solve a global 
problem without being explicitly aware of their joint task. Therefore we consider the 
global solution to be emergent. 

The emerging dynamics of the solution mechanism applied to a specific problem in 
a particular environment may be observed in a variety of metrics. These metrics may 
be based on processes inside the individual agent, observations across the agent popu-
lation at a given point in time, or aggregations over time. 

The primary performance metric is the global Degree of Conflict, which measures 
the quality of the solution to the graph-coloring problem at a particular point in time. 
Similar to the local DoC metric, it is defined as the portion of edges in the overall 
graph that connect nodes of the same color. It is the goal of the agent population to 
minimize this metric. 

To measure the quality of improvement provided by any solution mechanism, we 
compare the observed performance with the expected performance of a random search 
mechanism. In our case we assume for the random baseline that every agent selects its 
color uniformly random. In this case the expected global and local DoC equals 1/G. 
Therefore, we usually plot the DoC observed in experiment multiplied by G to show 
the change in the performance compared to random agent behavior. For configura-
tions in which the product of observed DoC and G is smaller than one, our algorithm 
outperforms random behavior. 

Any agent makes its color decision based on local information provided by its 
neighbors. It is the general approach of the distributed graph-coloring mechanism in 
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our model to optimize the global DoC by individual local improvements. In analyzing 
such individual hill-climbing mechanisms it is typically useful to consider the “steep-
ness” of the hill, which determines the guidance that an agent receives from the in-
formation that is used by its decision process. 

A metric called Option Set Entropy (OSE) estimates the guidance in the currently 
available local information as it is used by the agent’s decision process. The OSE is 
the normalized Shannon (or Information) Entropy [14] applied to the probability of an 
agent’s selecting a particular color in a decision cycle at a specific point in time. This 
probability is determined by the currently known colors of the node’s neighbors, the 
constraints on the change of the local DoC (MD parameter), and the chosen color se-
lection mechanism (CS parameter). 

We compute the OSE for an individual agent based on the selection probabilities 
computed by the agent in a decision cycle. All colors that are excluded by the MD con-
straint are assigned a probability of zero. If the agent uses the random color selection 
mechanism, all remaining colors share the same probabilities. If CS equals Roulette, 
the probabilities of the MD-reduced option set are those used in the roulette wheel se-
lection. Finally, if the agent only chooses among the best options, all but the best colors 
have a probability of zero and the best ones have equal (non-zero) probabilities. 

We compute the OSE as ( ) ( )Gpp
G

i
ii lnln

1=
−  where ip  is the probability of the agent to 

select the i-th of the G colors in this decision cycle. The metric reaches its maximum 
value of one if the agents select randomly among the G colors. 

OSE is a local metric that an individual agent may compute without any additional 
information. This is an important characteristic to qualify a metric as a candidate for 
individual agent learning. 

A third important metric on the operation of the distributed graph-coloring mecha-
nism is the amount of false information that is used by an agent in a color decision 
cycle. The False Information Percentage (FIP) measures the proportion of neighbors 
for whom the node assumes the wrong color when it makes its decision. 

Table 2. Additional Graph-Coloring Model Metrics

Metric Description 
Agent Activation Count 

(AAC) 
Number of Agents Activated in a Simulation Cycle 

Changed Color Portion 
(CCP) 

Percentage of Nodes that have Changed their Color in 
the Last Cycle 

Color Change Entropy 
(CCE) 

Information Entropy in Distribution of Recent Color 
Change Events in the Graph – Computed over whole 
Graph and Multiple Cycles 

Graph Characteristics 
(GC) 

Watts' Graph Metrics - Characteristic Path Length and 
Clustering Coefficient (REFERENCE) 

Random Option Size 
(ROS) 

Number of Colors among which an Agent chooses 
Uniformly Random 

Time to Solution 
(TTS) 

Estimate of the Number of Cycles it takes for the Net-
work Dynamics to Approximate a Fixed Location in 
State Space 
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False information is a direct result of the communication latency introduced by the 
real-world constraints of the deployment of the agent system. At the time an agent 
chooses its color, its neighbors may have already changed their colors but the mes-
sage sent by those neighbors has not yet reached this node. Thus, the agent uses stale 
color information. 

The FIP metric is non-local in time in the sense that the agent can only determine 
the percentage of false information after the fact. But it is local to the agent and thus, 
by keeping track of the assumed color values that went into a decision process and 
subsequently arriving (time-stamped) messages that falsify the assumptions, the agent 
may compute the FIP of a decision cycle CL time-steps later. In our simulation envi-
ronment we are of course able to take the global view and measure the FIP of an agent 
directly, but we never let the agent access this information. 

Table 2 lists additional metrics that we found useful to measure during our explora-
tion of the model’s parameter space, but which we will not report in this paper. 

4.3   Mapping the Problem Space 

Any undirected graph has a unique chromatic number, which is the minimum number 
of colors required to color the nodes without any conflict. In terms of our model, it is 
the smallest G for which there exists a color assignment of the graph that results in a 
global DoC of zero. 

Our exploration of the emergent dynamics of distributed graph coloring was part of 
a larger project [12] in which we researched the general dynamics of resource alloca-
tion. Considering the graph coloring problem as an instance of resource allocation, we 
focus on the transition from an underloaded state, in which we have more resources 
(colors) available than required, to an overloaded state, in which there are not enough 
colors to resolve all conflicts. 

No algorithm is known to determine the chromatic number of an arbitrary graph 
analytically. As a consequence we are not able to determine the location of the transi-
tion from an underloaded to an overloaded system just on the basis of our problem pa-
rameters. Furthermore, previous experiments with a generalized Minority Game 
model [13] showed that the characteristics of the solution mechanism strongly influ-
ence the emergent dynamics near the problem transition, which may lead to complex 
patterns of sub-optimal performance. 

 

Fig. 2. Parameter Sweep over N and G 
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Figure 2 shows our three metrics (DoC, OSE, FIP) for varying configurations of 
the problem parameters N and G. Each coordinate in a plot corresponds to the statisti-
cal mean of the respective metric over 32 simulation experiments of 2500 cycles with 
varying random seed. The data used in computing the metrics is gathered beginning at 
cycle 2000, to avoid initial transients. We vary N from 32 to 56 nodes and G from 2 
to 18 colors. All other model parameters are fixed to K=30, GC=MinimumNeighbors, 
AL=33%, RP=0%, CL=1, MD=Any, CS=Best. 

Considering the DoC*G plot, we find that there is a region near N>44, G=10 in 
which the agents clearly outperform the random baseline. We also find that the sys-
tem performs worse than random for similar values of G but smaller values of N. Fi-
nally, we see the system perform-
ance approaching the random base-
line as we increase the number of 
colors available. Figure 3 sketches 
the location of these three perform-
ance regions and Table 3 catego-
rizes the observed values in our 
metrics by region. 

How may we explain the struc-
ture of the observed system per-
formance in comparison with the random baseline? The answer for the asymptotic re-
gion can be found right away: Increasing G beyond the transition from the overloaded 
to the underloaded region in problem space makes the graph-coloring problem so easy 
that even a random assignment already provides a good solution. Thus, it is not the 
case that the performance of the agent system fails, but rather, the performance of the 
random baseline improves with increasing colors available. 

Considering the OSE metric in the asymptotic region we notice a slight decrease of 
the guidance (increasing entropy) for the average agent as we move to very large val-
ues of G. This observation supports our hypothesis, since in the asymptotic region 
many colors may provide the perfect solution and thus the local hill-climbing algo-
rithm of the agents has many equally perfect options available even on “top of the 
hill”. 

We also observe higher values of FIP in this region. This is due to the fact that 
even at the optimal local no-conflict state, there are multiple colors that are as good as 
the current one and thus the CS=Best mechanism may select randomly among them. 
As long as the agent changes the color of its node there will be messages sent to the 
node’s neighbors, whose delay result in false information used by the neighbors. The 
use of false information does not have a negative impact 
on the system’s DoC metric, since most choices are 
good ones anyway. However, the continuous change of 
color uses processing and communication resources 
without improving the solution. 

In the region where the observed performance per-
forms better than random, the agents also quickly find a 
stable color assignment (low FIP). Especially for larger 
values of N we see that the algorithm stabilizes even 
though a conflict-free color assignment is not found 
(DoC*G>0). The hill-climbing algorithm of the individ-

 

Fig. 3. System Performance 
Compared to Random Base-
line 

Table 3. Observed metrics by region 

Region Metric 
asymptotic better worse 

DoC * G   medium   low   high 

OSE     high   low medium 

FIP     high   low   high 
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ual agent (MD=Any, CS=Best) drives the overall system into a good local optimum 
from which it cannot escape. 

The plot of the FIP metric supports this hypothesis. The individual agent quickly 
finds a color assignment, which it cannot improve. Therefore only few color changes 
are communicated, which in turn reduces the portion of false information (FIP) in the 
agents’ decisions. 

In contrast, in the region in which the system performs worse than random, the FIP 
metric remains high but the OSE metric is low. This indicates that the system does not 
settle into a local optimum (high DoC) because the agents take well-guided decisions 
(low OSE) based on outdated information (high FIP) – the system is thrashing. 

We hypothesize that the descent into thrashing behavior is caused by the increased 
connectivity of the overall graph. In all configurations the number of neighbors per 
node (K) is fixed to 30. Thus, in a system with only 31 nodes, each node must be the 
neighbor of all other nodes and thus it has to coordinate its color directly with every 
node in the graph. Once we increase the number of nodes and therefore decrease the 
K/N ratio, a node has to coordinate only with a subset of the graph and the problem 
becomes easier. 

Assume a state in which the nodes have a high probability to change their color. 
With increasing connectivity of the graph, the probability that a node’s direct 
neighborhood includes one that just changed its color increases. Thus, high rates of 
color change produce increasing FIP values for decreasing N. Using outdated infor-
mation to solve a conflict that was already solved may actually reinstate the conflict. 
This is particularly true if the number of available colors is small. Therefore we ex-
pect thrashing behavior of the distributed graph-coloring mechanism in the low-N 
low-G region of the problem space. 

Figure 4 shows the three different system-level behaviors that we observe in the 
distributed graph-coloring model. 

4.4   Phase Changes 

The goal of the agent population to color their graph with the lowest degree of con-
flict is fulfilled in the asymptotic region and in the better-than-random region. Only in 
the region of low N and low G we find that thrashing induced by the delay of critical 
information leads to less-than-optimal performance. 

The communication latency parameter is the main driver of the performance de-
crease in our model. In a deployed system communication latency is an environmental 
parameter that usually may not be influenced by the agents or the agent programmer. 
To improve the performance of the agent system for low-N low-G problems, we have 
to find a solution parameter that counteracts the delay in communication. 

Thrashing occurs because the agents make color deci-
sions before critical information has arrived. In our 
model it is therefore the rate at which decisions are  
taken – determined by the agents’ activation level pa-
rameter (AL) – that needs to be adapted to the particular 
problem and environmental parameters. In section five 
we introduce a local adaptation mechanism that provides 
this capability, but first we analyze the transition into the 
trashing region in more detail. 

 
Fig. 4. Observed System-Le-
vel Behavior 
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Table 4. Plotting individual experiments reveals a phase shift into thrashing 

The plots in Table 4 show a series of parameter sweep experiments that vary the 
three problem parameters N, K, and G independently while keeping the remaining 
other parameters fixed to N=44, K=30, G=4, AL=33%, RP=0%, CL=1, 
GC=MinimumNeighbors, MD=Any, CS=Best. In all diagrams we plot the respective 
metric (DoC, OSE, FIP) for each of the 100 individual experiments of 10,000 cycles 
per configuration, beginning with cycle 9,500. 

Plotting results from individual experiments rather then the mean over all experi-
ments at one configuration as we did in Figure 2 shows that the dynamics of our 
model do not change gradually as we move into the thrashing region. Rather, thrash-
ing is a qualitatively different type of system behavior that either occurs, or not. 

Consider, for instance, a move from high to low values of N. Initially, we are in the 
region of better-than-random behavior, characterized by low values of DoC, OSE, and 
FIP. But suddenly, at N=49, we encounter systems that do not fit this profile, since the 
observed values in our metrics are significantly higher. Especially in OSE and FIP we 
find an extremely large jump. 

As we further decrease the values of N, both types of dynamics co-exist for a num-
ber of configurations. This overlap region is robust even as we continue to run our 
experiments for extremely long periods of time. Therefore we conclude that the selec-
tion of the respective attractor in system behavior (thrashing or benign) must be 
driven by the fine-structure of the graph that must be colored. At this point we have 
no data to explain, which graph-theoretic metric would best describe the boundary of 
the basins of attraction. 

Finally, for even lower values of N, we find that all experiments result in robust 
thrashing behavior. 

Our description of these changes as a “phase change” relates to the notion of a 
“phase transition” in physics. Many physical systems can exist in distinct phases and 
exhibit discontinuities in passing between them. Common examples are melting and 
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evaporation, or ferromagnetic transitions at the Curie temperature. Our results are par-
ticularly reminiscent of physical first-order phase transitions such as the melting and 
evaporation of water, in which multiple phases can coexist. Physical phase transitions 
have been a fruitful source of inspiration in computer science, particularly in studying 
issues of computational complexity [4, 6, 10]. In keeping with usage in the physics 
community, we believe it is important to reserve the term “phase transition” for a 
point of nonanalyticity in the behavior of a system, and describe our observations as 
“phase changes” or “phase shifts.” That is, a “transition” is characterized on the basis 
of the mathematical behavior of a model of the system, while a “change” is an em-
pirical observation based on experimentation. It will often be the case that the two 
correspond, but careful use of vocabulary supports the important distinction between 
empirical and theoretical results. 

5   Introspection and Learning 

Two of the system-level behaviors exhibited by the distributed graph coloring model 
(better than random, asymptotic to random) correspond to good problem-solving per-
formance, either because the agent population is “intelligent” enough to solve a com-
plex problem, or because the problem is so simple that even a random solution is 
likely to be good already. In the third region in parameter space, thrashing prevents 
the agents from finding and maintaining a good solution. To perform well in this re-
gion, agents must possess introspection (the ability to detect that they are thrashing) 
and be able to learn from their experiences. 

The distributed graph-coloring model represents a class of agent systems in which 
the agents are only able to interact locally based on potentially incomplete or outdated 
knowledge. Such systems occur for instance in real-world applications that deploy 
large numbers of agents in a physical environment with limited resources available to 
the individual agent (e.g., swarming robotics, sensor networks). As a consequence of 
the real-world constraints, any mechanism that is supposed to detect and counteract the 
emergence of thrashing behavior must operate at the individual agent level in regards 
to its input data and its influence on the system dynamics. Just as thrashing is an emer-
gent phenomenon, thrashing prevention must be an emergent functionality as well to 
be implemented in a completely distributed and decentralized fashion. 

 

Fig. 5. Sweep over AL 

In our discussion of the regions of performance we identified the delay of critical 
information as the main driver for the emergence of thrashing behavior and we sug-
gested that the rate of decision making (parameter AL) may be the most suitable solu-
tion parameter that needs to be adapted to prevent thrashing. Figure 5 plots another 
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sweep around the general configuration chosen for the plots in Table 4. In this sweep 
we only vary the AL parameter, but we again find that the systems eventually fall into 
the thrashing attractor for large enough AL. In this set of experiments neither the 
complexity of the problem nor the characteristics of the environment change. It is 
only the rate at which the agents take their color decisions that determines whether the 
system is thrashing or not. Thus, we conclude that for any configuration there exists a 
critical maximum AL value, above which thrashing will occur. 

Any system with a globally fixed AL parameter faces a dilemma. If AL is too high, 
some possible scenarios (problem and environmental parameters) will lead to thrash-
ing, while if it is too low, response will be slower than would otherwise be possible. 
Real-world applications are often driven toward this dilemma. Economic pressures on 
a resource allocation system tend to keep the number of resources low, corresponding 
to low G, where random choice is ineffective, while time pressures will tend to force 
decision rates up, corresponding to high AL.  

We address this dilemma by expanding the individual agent behavior with a local 
“AL-Learning” mechanism. Our proposed mechanism causes the agent to skip prob-
abilistically some decision cycles that it normally would have executed given its pre-
set AL parameter. Thus, we are able to slow an agent’s decision rate down until the 
thrashing stops. With this learning mechanism in place we may preset the AL parame-
ter to high values that permit short solution times, relying on the agents to modulate 
their own activity to avoid thrashing.  

The change in the behavior of an individual agent is driven by an additional pa-
rameter, which we call the agent’s No-Action Pheromone (NAP). It determines the 
likelihood that an agent’s color decision is skipped and therefore an agent with a NAP 
of zero operates at the decision rate specified by the AL parameter, while NAP values 
larger than zero reduce the decision rate. 

Initially, any agent’s NAP is zero, but over time the agent collects evidence that 
may increase the parameter. It is the rate and strength of the locally observed evidence 
that drive the increase in NAP. 

With the accumulation of knowledge (evidence) by the agent, we face a truth-
maintenance problem. Over time the agent may observe states that may be interpreted 
as evidence for thrashing, but that are just part of the normal operation. Also, for in-
stance through changes in other agents’ behavior, old evidence may no longer justify 
a decreased decision rate. Therefore, following the truth-maintenance approach of 
natural agent systems (e.g., insect colonies), an agent immediately starts to forget any 
knowledge that it receives unless it is continuously reinforced. 

We find that the observed percentage of false information is a superior source for 
the extraction of evidence for thrashing behavior at the individual agent level. As the 
plots in Table 4 show, we generally observe low FIP values when the global perform-
ance (degree of conflict) is high and high FIP values if the DoC is high. As mentioned 
before, the individual agent cannot observe the portion of false information in its cur-
rent color decision directly, but by keeping track of incoming and used color informa-
tion, it may determine the FIP with a delay equal to the communication latency of the 
system. Our experiments show that using this delayed FIP is sufficient to remove the 
system from the thrashing region. 



 Information-Driven Phase Changes in Multi-agent Coordination 117 

 

Fig. 6. Parameter Sweep over N and G with AL-Learning 

We treat the current NAP value as a concentration of a digital pheromone as we 
used them in several previous applications ([11], [3], [1]). Consequentially, we de-
posit additional pheromone into NAP in proportion to the strength of the current 
evidence, which is the locally observed delayed FIP. At the same time we continu-
ally “evaporate” the pheromone, reducing its concentration through multiplication 
with a fixed No-Action Probability Evaporation (NAPE) factor between zero  
and one. 

Based on our formal analysis of the dynamics of digital pheromones [1], we know 
that a repeated evaporation and deposit of the strongest evidence (FIP=1) drives the 
NAP parameter to approximate a fixed point of 1/(1-NAPE). Treating this fixed point 
as the upper limit, the agent skips a color decision cycle with a probability of 
NAP*(1-NAPE). 

Figure 6 repeats the parameter sweep experiment conducted for Figure 2 with the 
emergent introspection and learning mechanism at a NAPE value of 0.9. For easier 
comparison we scaled the z-axes to the same interval as in plots in Figure 2. We see 
that the thrashing region is completely gone (no performance worse than random) and 
almost completely replaced by good performance in the other two regions. 

A companion paper [9] analyzes this approach to calming hyperactive agents in 
more detail, and shows how it can be generalized to more concrete resource applica-
tion problems and to reasoning about approaching deadlines. 

6   Conclusion 

In this paper we present a model of distributed coordination among agents with  
limited resources in a real-world environment. The distributed graph-coloring mecha-
nism, proposed in [5], deploys agents in an environment that delays the transfer of in-
formation in the local interactions of neighboring agents in an undirected graph. The 
agents exchange information to assign colors from a finite set to their respective node 
in the graph in a way that globally minimizes the number of neighbors with the same 
color. The graph-coloring problem is an abstraction of many important agent coordi-
nation problems.  

The high degree of complexity of the emergent system-level dynamics suggests  
an experimental approach to the analysis of the model, especially for large systems as 
they occur in real-world applications. To support systematic experimentation and 
gathering of data from individual experiments we developed a generic software  
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infrastructure that executes for a specified subset of the model’s parameter space mul-
tiple replica of the model with different random seeds. The infrastructure enables us 
to explore the dynamics of an agent simulation model efficiently. 

The parameters of the distributed graph-coloring model fall into three different 
classes. Problem parameters configure the specific graph-coloring problem, solution 
parameters specify the features of the agent’s color decisions, and environmental pa-
rameters characterize the deployment scenario in which the agents solve the particular 
problem. 

Analyzing the dynamics of distributed graph coloring in a restrictive environment 
we find that there are three distinct regions of system behavior. On the one hand, the 
system may show good performance either because the agent population is suffi-
ciently intelligent to settle on a low-conflict solution, or because the problem is so 
easy that almost any randomly selected configuration results in a low degree of con-
flict. On the other hand, the agents may be prevented from finding and maintaining a 
good solution because critical information is delayed and the system falls into thrash-
ing behavior. 

Detailed analysis of the transition into the thrashing region reveals that thrashing is 
a qualitatively different phase in behavior space. Changing any of our model parame-
ters to transition into this phase takes us through an overlap region in which systems 
may or may not fall into the thrashing attractor. This observation leads us to conclude 
that there must be an implicit parameter, such as a characteristic of the randomly cre-
ated graph, that determines the attractor selection in the sensitive overlap region. 

Thrashing significantly reduces the problem-solving performance of the system. 
We find that for any configuration there is a maximum AL value, above which the 
system falls into the thrashing attractor. The individual agent may manipulate the so-
lution parameter AL and thus we propose an adaptive mechanism based on the local 
metric FIP (false information percentage) that dynamically adjusts the effective deci-
sion rate of the agent to prevent thrashing. Our experiments verify the performance 
improvements. 

The addition of the emergent introspection and learning mechanism drastically im-
proves the performance of distributed systems of agents coordinating in a limiting en-
vironment. Rather than being forced into very conservative global decision rates to 
guarantee that thrashing cannot occur in any possible scenario, we may start the 
agents with a higher decision rate that leads to faster solutions and slow them down 
only as thrashing occurs 
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Abstract. Self-organisation in nature is responsible for many complex and 
persistent phenomena. This suggests that self-organisation may be useful in the 
creation of complex applications. Multiagent systems use multiple agents to 
execute complex activities, and thus may be a basis for self-organising 
applications. In this paper we describe applications using self-organisation 
based upon the DIET multi-agent platform that supports lightweight agents. 
Multi-agent systems can be created that support decentralisation, scalability and 
adaptability. We show that these application properties are useful for 
information sharing in mobile communities via self-organising among middle 
agents, and via peer-to-peer interaction between agents. 

1   Introduction 

The complexity of the living world [e.g. 5] and of physical systems [23] has attracted 
much interest as a source of inspiration for applications. The persistence and ubiquity 
of the natural world suggests that self-organisation may be a means of constructing 
complex applications [2, 10]. Self-organising systems [10] function without central 
control, and through local interactions. Multi-agent systems (such as Farm [12], 
JADE [15], JAF [28] and GAIA [33]) provide a means of programming systems 
distributed across many autonomous entities. This suggests that they may be a useful 
basis for implementing self-organising systems, providing they have appropriate 
properties, including adaptability, scalability and decentralisation.  

Self-organising systems need to be able to control and adapt their properties in a 
robust manner. Where such systems consist of many agents the client-server model 
has been widely used, as elsewhere in computing. Middle agents or brokers [7] can be 
introduced as intermediaries between different classes of agents [7, 17, 31]. Both 
these configurations raise problems of the reliability of key elements: of the server or 
the middle-agents. Alternatively agents can use a decentralized peer-to-peer 
configuration, e.g. [2, 22]. These systems suggest that decentralisation is a useful 
property to support robust self-organising applications. 

Another property that may be useful for self-organised systems is that of 
scalability. Scalability has been referred to as the capability to adapt to a required 
performance level or number of users by adding resources to a system [25]. Scalable 
changes in software resources may imply not more than linear change in performance 
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as system requirements vary. Self-organisation may make this easier, by giving some 
capability to anticipate changes in the environment, and adaptability may increase the 
capability to respond to these changes. Since self-organising applications may not be 
able to predict completely the level of demands upon them, some capability for 
scalability will be useful. 

Decentralised control combined with scalability suggests effective performance. 
An additional useful property of self-organised applications is to be able to adapt to a 
changing environment, especially requirements of users. Adaptation in multi-agent 
systems may take place by a variety of different means [8, 21]. Because self-
organising applications depend on local interaction between agents, adaptation will 
arise in part from interaction between agents [e.g. 8, 20]. A self-organising system 
that has some capability for adaptation when combined with decentralisation and 
scalability should be able to support robust applications.   

This paper presents some examples of applications that show self-organisation. In 
the next section we outline the system used, based on the DIET Agents platform  
[9, 11]. In section three two applications that use self-organised agent systems are 
described: the self-organising communities application and the P2P-DIET peer-to-
peer service. Finally we consider how these applications show results consistent with 
robust self-organised systems. 

2   System Outline 

2.1   The DIET Agents Platform 

The applications described in this paper have been implemented using the DIET 
Agents platform [9, 11]. This software platform draws inspiration from complex 
interactions in natural ecosystems [30]. Many organisms with little individual 
intelligence can respond to the environment through group interaction (e.g. [5]). 
Consequently the platform is designed around agents with limited individual 
capabilities. Intelligent behaviour can emerge from the interaction between agents.  

The DIET Agents platform is designed as a three-layer architecture: 

• Application Layer 
• Application Reusable Component (ARC) Layer 
• Core Layer. 

The lowest layer, the core layer, contains the DIET kernel, enabling DIET 
environments and providing the basic capabilities for agent creation. The kernel also 
provides for connections between agents, which allows messages to be passed 
between them. The core layer also contains basic support for debugging and 
visualisation.  

The application reusable component layer contains software components that are 
reusable between multiple applications, but are not essential for inclusion in the core 
layer. Examples of the components included are ones supporting remote 
communication and event scheduling.  

The application layer contains code specific to particular applications, as well as 
debugging and visualisation code that may be application specific. Establishing agents 
in this way enables the multi-agent system so created to be linked to a visualisation 
system so that users can visualise agent behaviour  [18]. 
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The architecture described here simplifies the development of applications, as core 
classes required for multi-agent systems are provided in a manner that can be easily 
extended without limiting too much the direction of potential applications. The DIET 
core platform has been released as Open Source under the GPL Open Source licence. 
More information is given on the DIET Open Source web site [9]. 

2.2   Kernel Properties 

The DIET kernel defines a hierarchy of elements that provide a basis for creation of 
multi-agent systems: 

• Worlds 
• Environments 
• Agents 
• Connections 
• Messages. 

Agents reside in environments. Environments implement a "physics" for DIET 
agents. Worlds are placeholders for environments - a world manages functionality 
shared between environments. A world is also the access point to the kernel for 
debugging and visualisation components.  

Agents are at the centre of the DIET element hierarchy. Agents are defined in 
terms of addresses. This consists of an environment address, determined by the 
environment in which it resides, and an agent identity, defined when the agent is 
created. The agent identity has two components, a name tag specific to that agent, and 
a family tag common to other agents with the same functionality. The family tag 
allows for groups of agents with common function to be identified by an application. 
The name tag allows individual agents to be differentiated. 

Agents have limited initial behaviour (which can be extended as required by 
application developers). The environment provides functionality for agents to create 
other agents, migrate to different environments, communicate with other agents, and 
to self-destruct if they are no longer required (but they cannot destroy other agents).  

The kernel implementation is "resource constrained" and "fail-fast". The kernel 
actions are resource constrained because there are explicit limits on the resources that 
can be used. The kernel actions are fail-fast because when an action cannot be 
executed instantaneously, it fails immediately. The fail-fast, resource constrained 
implementation of the kernel actions protects the system against overload. When the 
system becomes overloaded, it offers basic protection by rejecting actions and 
throwing exceptions, which provide feedback to agents. Additional agent capabilities 
can be created as part of applications. 

2.3   Application Properties 

2.3.1   Decentralisation 
DIET agents can be distributed across multiple environments and multiple worlds if 
needed. No agent need be the controlling agent, or server, so there is no obligation for 
a client-server architecture. Consequently the DIET platform is appropriate for peer-
to-peer applications [4] which can be used to implement decentralised control. The 
flexibility of peer-to-peer configurations means that decentralisation does not prevent 
some sort of localised centralisation, where this is useful [20]. 



 Self-organising Applications Using Lightweight Agents 123 

2.3.2   Scalability 
Low resource use by agents in a multi-agent system can facilitate scalability. In the 
DIET platform, low resource demand by individual agents, combined with thread-
sharing between agents, means that a very large number of agents can be 
maintained simultaneously. The specific amount of resources required by each 
agent, and the resource overhead of the platform are application-dependent, but the 
initial system design facilitates low resource requirements. DIET agents use only 
one thread each (at most). If insufficient threads are available, agents can 
temporarily give up their thread, only to reclaim it later. Scalable use of system 
resources was demonstrated across a 32-processor Beowulf cluster supporting 
100000 agents [19]. 

2.3.3   Adaptability 
DIET agents can adapt by collaboration among a large number of agents. A 
demonstration of this is in the use of DIET agents as individuals in an evolutionary 
algorithm, evolving agent preferences [11, 20]. The application is a collaboration tool. 
Each user is represented by a user agent, deployed in a DIET environment. The user 
agent carries information about its user's interests, indicating the preferred area of 
collaboration. Multiple users participate via this application, either on the same or 
different machines. Environments are linked in a network, intended to approximate a 
fully connected decentralised peer network [20].  

User agents deploy scout agents to interact via the peer network. The scout agents 
travel to other environments to interact with other scout agents. The preference of 
scout agents for environments is selected via an evolutionary algorithm using scout 
agents as individuals. Over multiple generations populations of scout agents will 
adapt their behaviour to facilitate interaction between distributed users with common 
interests [20]. This algorithm represents a means of mediating collaboration between 
distributed users, and supporting adaptability of agents. 

3   Self-organised Applications 

DIET agents can draw upon self-organisation, forming persistent communities that 
arise from the interactions between the agents rather than from central control. Two 
examples are presented here: self-organising communities [29] and P2P-DIET [16]. 

3.1   Self-organising Communities 

Information sharing among multiple users can be organised in several ways. 
Centralised solutions [3, 17] can provide effective applications, but they do depend on 
a single agent not getting overloaded. Decentralised solutions  [1, 26] have an 
advantage, and can self-organise to respond to changes in user behaviour.  

Self-organising communities [29] supports community formation among users with 
common interests. User agents represent users. User agents each register with one or 
more middle agent. User agents (requestors) send queries about their user’s interests 
to middle agents. Given these queries, each middle agent then searches among the 
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information it holds from other user agents registered with it. If it can respond to a 
query based on this information then the search is completed. Otherwise, the middle 
agent communicates with other middle agents in order to try and obtain the 
information. Once this has been done, the middle agent relays results of the search to 
the requestor. Having done this, the middle agent examines whether the search was 
successful, in that there was a user agent (provider) matching the query. If so, the 
requestor and provider both gain positive awards. If not, the requestor gets a negative 
award. 

Following award assignment, the middle agent checks whether both the requestor 
and provider are within its group. If not, the middle agent of the requestor transfers 
the provider to its group, so that both user agents are in the same group. User agents 
with lower awards move towards user agents with higher awards. The consequence  
of the award scheme is that the processing of queries stimulates the formation of 
communities, made up of users with common interests. The querying behaviour of 
user agents builds up a profile of their interests, which is updated by successive 
queries. This is a highly scalable process that operates efficiently with many users 
[29, 6].  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Self organisation of agent communities - different colours represent different user 
interests 
 

Experiments were carried out with simulated data on the formation of user 
communities, and time and efficiency of searches based on the user communities 
formed around middle agents [29]. Multiple experiments always showed self-
organisation in terms of the formation of user communities of user agents around 
middle agents. Measurement of self-organisation activity was carried out through 
analysis of the success rate of queries. Investigation of success rates of query results 
and time taken to search data showed an increase in success rate once communities of 
users had started to form, culminating in a success rate close to the optimal rate once 
user communities had reached a stable state. The query time for individual queries 
also declined as a consequence of the formation of user communities around middle 
agents. The number of queries per user required for communities to reach a stable 
state increased with the number of users, but in a near linear manner, so that 
performance scaled effectively [29]. 

Middle 
agents 

Process of
self-organisation

User
agents 
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3.2   Implementing Peer-to-Peer Systems with P2P-DIET 

The DIET platform has also been used to implement the extensible P2P service P2P-
DIET [14, 16, 24]. P2P-DIET is a super-peer system and has two kinds of nodes: 
super-peers and clients (see Fig. 2). Each node is implemented in a DIET 
environment. Super-peers are equal and have the same responsibilities. Each super-
peer serves a fraction of the clients and keeps indices on the resources of those clients 
to be able to answer queries efficiently. Clients can run on user computers where 
resources are also stored. Clients interact directly with one another to access 
resources.  
 

 
 

Fig. 2. P2P DIET  

P2P-DIET supports the typical one-time query scenario of P2P networks. Answers 
are returned to the access point of the client originating the query and are then passed 
to the client for further processing. P2P-DIET also supports long-standing 
(continuous) query scenarios. Clients may subscribe to the system with a continuous 
query expressing their long-standing information needs. Whenever a resource is 
published at an access point, P2P-DIET makes sure that clients with profiles matching 
the metadata of this resource are notified.  

A client can be connected to P2P-DIET through a single super-peer node, which is 
the access point of the client. Clients are allowed to migrate to a different access point 
and can use dynamic IP addresses. Clients can connect, disconnect or even leave the 
system silently at any time. When a client is off-line, notifications matching its 
continuous queries are stored by the access point of the client and are delivered to it 
the next time that it connects to the network. P2P-DIET provides message 
authentication and message encryption using public key cryptography. Public/private 
keys are also used to securely identify peers since it is not possible to identify a peer 
from its IP address because peers may use dynamic IP addresses. 

The P2P-DIET implementation makes use of the capabilities of lightweight mobile 
agents offered by the DIET kernel to implement various local management tasks and 
P2P protocols. For example, in each super-peer environment, a data management 
agent keeps indices on resource meta-data and continuous queries to achieve scalable 
query processing and filtering by each super-peer, while a router agent achieves 
correct flow of network messages by using shortest paths and minimum-weight 
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spanning trees. For each ad-hoc query posed by a user, a query answering agent starts 
from the user’s client environment and, using information from router agents, 
migrates to all super-peers to find all resources that match the user query. Similarly, 
for each continuous query subscribed by a user, a subscriber agent starts from the 
user’s client environment and migrates to appropriate super-peer environments to 
subscribe the query.  

P2P-DIET shows that the DIET Agents platform with its self-organization 
capabilities can be used to develop large scale P2P applications. The P2P-DIET 
application takes advantage of self-organisation at two levels: the super-peer network 
and the DIET Agents platform that is used to realize P2P-DIET. At the first level, 
P2P-DIET super-peers self-organize into a network which deals efficiently with pull 
and push information requests while adapting to super-peer joins, leaves or failures. 
At the second level, lightweight DIET Agents self-organize to implement P2P-DIET 
functionalities. The operation to be performed by an agent is not determined by any 
kind of higher level of control. On the contrary, its current status and the state of its 
environment determine agent decisions. Newly created agents are independent to 
travel around the network and collect query answers. 

P2P-DIET is an extensible system for the development of applications supporting  
the two scenarios discussed above (see the layered view of the system on the right-
hand side of Figure 2). In the current demo of the system publications and 
subscriptions are expressed using a well-understood attribute-value model called 
AWPS in [16]. AWPS is based on named attributes with value text interpreted under 
the Boolean and VSM or LSI models. The query language of AWPS allows Boolean 
combinations of comparisons A op v, where A is an attribute, v is a text value and op 
is one of the operators "equals", "contains" or "similar" ("equals" and "contains" are 
Boolean operators and "similar" is interpreted using the VSM or LSI model of 
Information Retrieval. E.g., upon receiving a new publication, a P2P-DIET node can 
filter 3 millions of long-standing queries in just under 200 milliseconds. 

4   Discussion 

We have considered two applications using self-organisation that build upon the 
properties of the DIET Agents platform. The self-organising communities application 
demonstrates the capability to organise user agents into communities of interest that 
facilitate information exchange. This community formation varies with increasing 
numbers of users and hence increasing numbers of agents, but produces a mean time 
of response to query that scales almost linearly with number of users. This shows not 
only a versatility for different sizes of problem with different numbers of users, but 
also, since community formation appears to always occur, self-organisation that 
appears not to be disrupted by different starting conditions. Self-organisation between 
agents leads to conditions that are more productive for individual agents than those in 
which they started. Furthermore, it ensures reliability of the application as queries 
from user agents are solved. 

P2P-DIET shows how self-organisation using the DIET Agents platform can be 
used to develop large scale P2P applications.  Although distributed P2P applications 
can be built without using agents, the DIET agents platform allowed us to develop 
such applications quickly and effectively. However, more experience with such 
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applications is necessary in order to come up with a general methodology for the 
development of self-organising software systems (presumably, this methodology will 
be based on traditional software engineering principles as well as new inspirations 
from self-organization). The use of self-organization and the sophisticated indexing 
schemes of [27] helped us to achieve high performance and scalability in P2P-DIET. 
We have not yet carried out detailed experimentations using P2P-DIET beyond these 
reported in [27], so it is not clear at this stage how much of the scalability of P2P-
DIET is due to indexing and how much to the self-organizing protocols utilized.  

Both the examples discussed here address problems of information retrieval among 
a diverse community of users. Multi-agent based applications bring the capability to 
partition information across multiple agents, and thus to break up the problem into 
smaller parts. This also allows for decentralisation of the control of the application, 
giving greater robustness. An element of self-organisation makes control easier in a 
decentralised network, as elements associate without additional external stimulus. 

Both applications implement peer-to-peer networks in the form of super peer 
networks. These have been shown to have advantages over pure peer-to-peer 
networks, in terms of efficiency of search [32]. The applications discussed here show 
some of the usefulness of super peer networks. Further work needs to be done to 
investigate the performance of applications based on these networks in relation to 
other peer-to-peer information retrieval applications, and the consequences of 
adjusting properties of the networks used on application performance. 

These examples have shown ways how lightweight multi-agent systems can be 
used to leverage self-organisation among agents to produce information management 
applications. The applications here draw upon relatively simple forms of self-
organisation and of information representation. Next steps for the development of 
such applications include considering extensions to the network architecture linking 
agents, and investigating different types of queries or responses from such agent-
based collaboration tools. Further development of applications in this area must 
follow further the potential for peer-to-peer computing [2, 4] and autonomic 
computing [13] to support the development of robust applications.  
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Abstract. Constraint Programming research is currently aimed at solving prob-
lems in a dynamically changing environment. This paper addresses the problem 
of solving a Dynamic Distributed Constraint Satisfaction Problem (Dynamic 
DCSP). The solution proposed is an algorithm implemented in a multi- agent 
system. A Dynamic DCSP is a problem in which variables, values and con-
straints are distributed among various agents. Agents can be freely added to or 
removed from the system. Most advanced applications cannot be represented by 
DCSPs, but they can be modeled by Dynamic DCSPs. The algorithm described 
in this paper is an extension of the Asynchronous Weak Commitment Search 
algorithm (AWCS) originally proposed by Yukoo [10]. The extended algorithm 
is designed to cope with the dynamically changing parameters of a Dynamic 
DCSP. The proposed algorithm differs from other Dynamic DCSP algorithms 
because it allows an unlimited number of changes to any of the variables, val-
ues, or constraints. This paper describes an agent system implementing the 
modified AWCS algorithm and verifies its effectiveness by applying it to a dy-
namic N-Queens problem. The results prove the applicability of the modified 
algorithm to Dynamic DCSP. 

1   Introduction 

This paper presents the dynamic extension of the Asynchronous Weak-Commitment 
Search algorithm (AWCS) originally proposed by Yukoo [10]. The AWCS algorithm 
is used to solve Distributed Constraint Satisfaction Problems (DCSPs) using a multi-
agent system. A multi-agent system is a system in which a cluster of agents work or 
collaborate together to reach their goals. Constraint Satisfaction Problems are defined 
by three main components: variables, values, and constraints. To solve a DCSP, each 
variable must take a value that satisfies all of the constraints. In DCSPs, distributed 
systems are introduced to overcome the limitations of solving Constraint Satisfaction 
Problems using a single centralized system. The literature suggests that multi-agent 
systems can be used to solve DCSPs. Each agent becomes responsible for one or more 
distinct variables, depending on the algorithm and the specific problem. 
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The original version of the Asynchronous Weak-Commitment search algorithm is 
limited to a static environment; the numbers of variables, values and constraints are 
fixed for each run. On the other hand, most real world applications, such as hospital 
scheduling [2],[5], airport scheduling, job-shop scheduling [8], or resource alloca-
tion[4, 6] are subject to dynamic changes due to new requirements, or when resources 
are being added or removed. It is difficult and impractical to have to change a system 
or to rerun a program every time there is a requirement change. This paper introduces 
an extended AWCS algorithm to solve a Dynamic DCSP. The algorithm allows one 
to add or remove variables, values and constraints without having to stop and restart 
the program or to remodel the problem. The approach proposed is innovative in that it 
allows an unlimited number of changes to the problem, without the need to restart the 
agent system. 

1.1   Original Weak-Commitment Search Algorithm 

The Asynchronous Weak-Commitment Search algorithm is an efficient algorithm used 
to solve Distributed Constraint Satisfaction Problems using Distributed Multi-Agent 
Systems [10]. It is a hybrid algorithm that merges the iterative improvement (Hill climb-
ing) and min-conflict algorithms [7, 3]. In the words of the author “agents can revise a 
bad decision without an exhaustive search by dynamically changing the priority order of 
agents” [10]. The fundamental concept of the AWCS algorithm is to use the min-
conflict heuristic for new value selection, and to maintain a weak commitment to a 
partial solution by dynamically changing the priority order of agents. A partial solution 
is recorded as a “nogood” solution whenever there is a search failure. Each nogood is 
recorded in a list to prevent the algorithm from falling into a previous situation. 

2   Proof of Concept 

This paper uses a dynamic version of the N-Queen Problem as a proof of concept of 
the modified AWCS algorithm, since the N-Queen problem is a classical constraint 
satisfaction problem. The goal of this problem is to place N queens in an N by N 
chessboard, in a way that they will not be able to eliminate each other. A set of x1, 
x2, …, xn represent the queens in the chessboard. The set of constraints between xi 
and xj is (xi  xj) (|i-j| | xi - xj |). Thus, one queen can eliminate another queen if 
they are in the same row, or same column, or same diagonal. The system design 
includes three main agents: the Loader agent, the Name Service agent, and the 
Queen agent as shown in Fig.1. The detailed description of each agent follows. 

The first agent, the loader agent, is responsible for loading all other agents. Dur-
ing the testing phase, the loader agent also automatically loads new Queen agents 
into the system to test that the environment can change dynamically. Whenever a 
solution is found for a certain configuration, a new Queen will be added to the sys-
tem. This action changes both the number of Queens in the system and the size of the 
chessboard to match. Therefore, all dynamic changes are effected through the loader 
agent. Agents can be added at any time during the execution, but the testing script 
only adds them at the end of a run to test the validity of each solution before moving 
on to the next. 
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Fig. 1. Dynamic DCSPs System Design 

The Name Service agent is responsible for name registration of all other agents and 
for putting the agent names in a list. This list is provided to every agent registering 
with the Name Service Agent. Notifications are sent to all agents registered with the 
system for any agent additions or deletions. The Name Service agent is responsible 
for keeping track of all the Queens that are added to or removed from the system. 

Queen agents represent players in the chessboard. They can communicate by send-
ing messages. This will help them reach a solution. Queen agents are autonomous and 
can move asynchronously. This means that they can make a decision based on their 
internal algorithm and the information they receive from other agents. Queen agents 
will keep listening for messages, even after a solution is found. This allows them to 
react to changes in the environment. Queen agents can be added to or removed from 
the system at any time. The number of Queens in the system defines the size of the 
chessboard; the size is increased if a new Queen is added to the system, and the size is 
reduced if a Queen is removed from the system. The remaining Queens in the chess-
board adapt to the changing environment, and search for new solutions dynamically. 

3   Modified AWCS Algorithm 

In the modified AWCS algorithm, each Queen agent is assigned to one variable repre-
senting its row that is associated with the Queen’s column position in the chessboard. 
Rows are determined and assigned automatically to each Queen, and are not change-
able. The dynamic extension part begins as follows (Fig. 2). When the system starts, 
each agent registers itself with the Name Service agent. The Name Service agent adds 
the agent’s name to a list. To ensure the dynamic character of the system, each agent 
is made aware of other agents being added to or removed from the system. Thus, the 
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number of queens and the list of all the agents representing them are made accessible 
to every agent. The size of the chessboard is automatically defined by the number of 
Queens in the system. This design does not allow a chessboard with more than one  

 
When a Queen agent first created do: 
   Send Register message to a Name Service agent 
     Request an agent list from a Name Service agent 
       Initiate an initial value and priority 
          add those parameters into an Agent_View 
            current value (vi) = initial value 
             current priority (pi) = initial priority = 0; 
end do; 
 
When receive an agent_list from a Name Service agent 
   Size of chessboard = number of agents in the list 
     Send OK? (xi, value, priority) to other agents in the 
list; 
       end do; 

Fig. 2. Dynamic Extension part of AWCS algorithm 

 
When  receive OK? (xj, vj, pj) do: 
  If agent_view already contains (xj, vj, pj) 
    have already acted on that, do nothing 
     else add (xj, vj, pj) to an agent_view 
  if agent_list does not contain Xj 
    size of chessboard = size +1; 
      check agent_view; end if 
        end if; end do; 
 
When  receive nogood (xj, nogood) do: 
  add nogood to nogood_list 
    check_agent_view; end do; 
 
Method Check agent_view 
  When current value is not consistent with agent_view do: 
    If no value is consistent with higher priority in an 
agent_view 
    then Backtrack; 
      else do a min-conflict with lower priority agents 
        current value (vi) = minimum conflict number; end if 
send OK? (xj, vj, pj) to all other agents; end do; 
 
Method Backtrack 
  When an empty solution set happen, broadcast no solution 
do: 
   add nogood into nogood_sent  
     send nogood to all other agents 
       Increase pritoity -> current priotity = 1 + pmax  
         Do min-conflict with lower priority agents 
           Current value = min-conflict value 
             Send OK? ( xi, vi, pi) to other agents; end do; 

Fig. 3. Excerpt of the AWCS algorithm from [10] 
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Queen per row. After receiving the first message from the Name Service Agent, each 
Queen agent will send “OK?” to all other agents, and wait. 

Fig. 2 and 3 constitute the modified AWCS algorithm. Queen agents may receive 
three different types of message: “OK?,” “nogood,” and “agent_list.” When a Queen 
agent receives “OK?” it will add the three parameters coming with the message (xj, 
vj, pj) into its agent_view. If the “OK?” comes from a Queen xj that is not in the 
agent’s agent_list, it will add that Queen into the agent_list and expand its value do-
main (or the size of the chessboard). Then it will call the check agent_view method. If 
the current value of the agent’s variable is not consistent with the received agent_view 
(i.e., the constraints are not satisfied), the Queen agent will find a new value that is 
consistent with higher priority agents and that has the minimum conflict with lower 
priority agents. If there is no value left in the domain that is consistent with higher 
priority agents, the agent will perform a backtracking step. In the backtracking proce-
dure, a “nogood” is sent to other agents and recorded in a nogood_list. After that the 
agent will increase its priority and perform a min-conflict procedure with lower prior-
ity agents. The min-conflict procedure adjusts the agent value to be in minimum con-
flict with the agents of lower priority. Finally, the agent will update its agent_view 
and send “OK?” with the new value and priority to all other agents. 

4   Working Example 

This part illustrates the execution of the modified AWCS algorithm for an N-Queens 
problem. The example starts with the 4-queens problem shown in Fig. 4(a). Each 
agent starts by sending its initial value and priority to all other agents. The priority of 
each agent is shown in parentheses. Each agent will then check its consistency with 
all higher priority agents. All agents have the same priority number 0, so the priority  
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Fig. 4. Example of Algorithm Execution 
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will be decided by the alphabetical order of the agent names. As a result, Agents X3 
and X4 are not consistent with an agent_view. The minimum conflict value for X3 is 
number 4, as shown in Fig. 4(b). At the same time, X4 has no consistent value, so it 
sends “nogood” to all higher priority agents and performs a Backtracking step. Since 
there is more than one minimum conflict value to choose from, the agent will choose 
the value according to its alphabetical (or numerical, in this case) order. In this case 
the current value is also a minimum conflict number, but the agent will ignore the 
current value and choose the next number. Therefore, X4 will choose value number 2, 
and a solution will be found. 

After a solution is found, all agents remain waiting for messages. Fig. 4(d) shows 
what happens when a new Queen is added to the chessboard. The chessboard will 
now become a 5 by 5 chessboard. The new Queen will initialize its initial value and 
priority and will send those parameters to all agents. Therefore, all other agents will 
be made consistent with the late updated agent_view. Only X5 will find itself not 
consistent with agent_view, so it will move to column number 5 and a solution will be 
found. Then, all agents will wait for new messages. 

5   Results 

A set of tests was performed to verify the effectiveness of the algorithm. The algo-
rithm was applied to a series of N-Queen problems as follows. Initially, the algorithm 
was tested on static problems with 4, 5, and 6 queens respectively. Since solutions to 
all these problems already exist in the literature, it was simple to prove that the algo-
rithm is able to find a solution to the static N-Queens problem. An analysis of the 
steps followed by the algorithm showed that the solution trace mimics the steps of the 
standard Asynchronous Weak-Commitment Search algorithm. 

Subsequently, the algorithm was tested with a dynamic problem as follows. The 
test started with 4 Queens, and whenever a solution was found, a new queen was 
added to the system automatically. This configuration was chosen to confirm that 
the static solution was found for every number of queens. The results show that the 
system can adapt to new changes by increasing the size of the chessboard to match 
the new number of Queens and find valid solutions. The dynamic algorithm was run 
for a large number of times (greater than 100) with an empty chessboard at the 
beginning. 

Since every agent runs in a separate thread, and thread scheduling is not regulated 
by the platform but rather by the operating system, every time the platform was run 
there was a simple randomization in the start time of agents. Moreover, message ex-
change is not serialized in any way in the agent platform chosen for the implementa-
tion of the agent system. The order of arrival of messages to the Name Service agent 
was thus not guaranteed. This ensured that a sufficient amount of randomization oc-
curred between runs. 

The analysis of the execution traces logged by the agent platform revealed that the 
“nogood” part of the algorithm was not needed for fewer than 8 queens, but for 8 or 
more queens, the “nogood” algorithm successfully prevented backtracking loops. The 
size of the “nogood” list is not examined in this paper, and will be the subject of a 
detailed analysis in the future. 
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6   Conclusions and Future Work 

The main contribution in this paper is an extension of the Asynchronous Weak-
Commitment Search algorithm that deals with dynamic Distributed Constraint Satis-
faction Problems. The extension makes it possible to vary any number of parameters 
of the problem at any given time and still maintain consistency in order to find a  
solution. 

The algorithm is still currently being studied. Its performance is the same as that of 
the AWCS algorithm, but its dynamic capacity allows it to consider new variables, 
values, and constraints. A formal analysis of the usefulness of this feature has not 
been performed yet, but it is safe to assume that for incremental problems such as 
dynamic timetables (in which the changes occur as increments to an existing timeta-
ble) there is a definite advantage in starting with a known good configuration. 

In the future, the authors intend to pursue further the dynamic part of the algorithm 
and to further improve the algorithm possibly with stochastic modeling coming from 
the additional knowledge that the algorithm has of the dynamic changes. This will be 
particularly useful in situations where there is high variability. Further analyses on 
optimal deployment of agent platforms will also follow. 
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Abstract. The goal of engineering self-organising emergent systems is to acquire
a macroscopic system behaviour solely from autonomous local activity and inter-
action. Due to the non-deterministic nature of such systems, it is hard to guaran-
tee that the required macroscopic behaviour is achieved and maintained. Before
even considering a self-organising emergent system in an industrial context, e.g.
for Automated Guided Vehicle (AGV) transportation systems, such guarantees are
needed. An empirical analysis approach is proposed that combines realistic agent-
based simulations with existing scientific numerical algorithms for analysing the
macroscopic behaviour. The numerical algorithm itself obtains the analysis results
on the fly by steering and accelerating the simulation process according to the al-
gorithm’s goal. The approach is feasible, compared to formal proofs, and leads to
more reliable and valuable results, compared to mere observation of simulation
results. Also, the approach allows to systematically analyse the macroscopic be-
haviour to acquire macroscopic guarantees and feedback that can be used by an
engineering process to iteratively shape a self-organising emergent solution.

1 Introduction

In an industrial research project EMC2 [1], we examine the possibilities of a self-
organising emergent solution for an Automated Guided Vehicle (AGV) warehouse
transportation system. In this case study a group of AGVs has to transport incoming
loads from pick up locations to specific destinations in the warehouse. Experience
has shown that the current centralised system has problems with scalability because
it cannot handle many AGVs efficiently. Also, the system is not flexible, i.e. the cur-
rent solution cannot handle frequent changes in the transportation problem and it needs
to be customised and optimised each time the system is deployed. There is a need
for a decentralised system that adapts itself to each different situation. In [2], both
‘emergence’ and ‘self-organisation’ are defined and a combination of both is a pro-
mising approach for a complex and dynamic system such as the AGV system. Other
examples of systems where self-organised emergent solutions are advantageous are
telecommunication networks, flexible manufacturing networks, and dynamic traffic
networks.

The goal of engineering self-organising emergent systems is to acquire a system with
a coherent macroscopic behaviour which meets the requirements and results solely from

S.A. Brueckner et al. (Eds.): ESOA 2005, LNAI 3910, pp. 138–152, 2006.
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autonomous local activity and interaction. Macroscopic is defined as being observed as
an overall or global pattern, structure, or behaviour of the system as a whole. Despite
multiple initiatives, how to systematically build such a system remains an open issue.
Today, such systems are mostly built in an ad-hoc manner. However, experience in the
industrial project EMC2 [1] revealed that before even considering a self-organising
emergent system in an industrial context, guarantees are needed that the required cohe-
rent macroscopic behaviour is achieved and maintained.

This paper describes an approach that allows to systematically analyse the macros-
copic behaviour to guarantee that the requirements are achieved. Realistic agent-based
simulations are combined with existing scientific numerical analysis algorithms for dy-
namical systems. This combination leads to more reliable and valuable results, compared
to mere observation of simulation results, because the analysis algorithm itself obtains
the results on the fly by steering and accelerating the simulation process according to
the algorithm’s goal. In order to also achieve a more systematic approach for building
self-organising emergent systems, it is proposed to integrate the analysis approach into
the engineering process such that a constant feedback loop between scientific analy-
sis and engineering shapes a self-organising emergent solution. In the end, a systematic
simulation-based engineering process can be achieved.

The paper is structured as follows. In section 2 the AGV case study that is used
throughout the paper is described and motivated. Then, section 3 describes the analysis
approach and how to systematically apply it. Section 4 discusses how to systematically
engineer a self-organising emergent system by exploiting scientifically founded analysis
results. Finally, a conclusion and some directions for future work are given.

2 The Case Study: Automated Guided Vehicles

In an industrial research project EMC2 [1], our group develops self-organising emer-
gent solutions for AGV warehouse transportation systems. Experience revealed an in-
dustrial need for guarantees about the macroscopic behaviour. Therefore, the AGV case
is used throughout the paper. The automated industrial transport system, that we con-
sider, uses multiple transport vehicles. Such a vehicle is called an AGV and is guided
by a computer system (on the AGV itself or elsewhere). The vehicles get their energy
from a battery and they move packets (i.e. loads, materials, goods and/or products) in a
warehouse. Each individual AGV is capable of only a limited number of local activities
such as move, pick packet, and drop packet. The goal of the system is to transport the
incoming packets to their destination in an optimal manner.

A simulator1 is developed for such an AGV system that allows to execute the simu-
lations needed in the analysis approach described later in this paper. The screen-shot in
figure 1 illustrates the problem setting described above: the locations where packets
must be picked up are located at the left of the figure, the destinations are located at
the right, and the network in-between consists of stations and connecting segments on
which the AGVs move. Segments are unidirectional. A bidirectional segment is con-
structed using two overlapping unidirectional segments. Packets are depicted as rectan-
gular boxes and some of the AGVs shown hold a packet, others do not.

1 http://www.cs.kuleuven.be/˜distrinet/taskforces/agentwise/agvsimulator/
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Fig. 1. Screen-shot of AGV Simulator

The AGV problem is a dynamic problem with non-deterministic features (e.g.
packets can arrive at any moment, AGVs can fail, obstacles can appear). The project
with our industrial partner [1] has shown that a solution using a central server to con-
trol all AGVs cannot handle the frequent changes efficiently. The central server has
to constantly monitor the warehouse and each AGV to detect and react to changes by
steering each AGV. Because AGVs are moving constantly, reacting on changes has to
occur instantaneously. The central server becomes a bottleneck in the presence of fre-
quent changes. As a consequence, the current central solution is not scalable and can
only handle a limited number of AGVs. Also, the system is not flexible when it has
to be deployed, i.e. the system needs to be customised and optimised each time it is
deployed in another warehouse. Therefore, larger and dynamic AGV systems require
a self-organising emergent solution in which the AGVs adapt to the changing situati-
ons themselves by only using locally obtained information, local interactions, and local
activity. However, before even considering a self-organising emergent solution for the
AGV system, guarantees are needed that the required coherent macroscopic behaviour
is achieved and maintained. Thus, an analysis approach integrated into the engineering
process, that offers guarantees, is required.

3 The Analysis Approach

The main question here is how to know if a certain self-organising emergent system
exhibits the required macroscopic behaviour. The analysis approach described in this
section focusses on how to analyse the macroscopic behaviour of such a system and
should result in guarantees about that macroscopic behaviour. Firm guarantees could
be obtained if the system is modelled formally and the required macroscopic behaviour
is proofed analytically. However, constructing a formal model and correctness proof
of a complex interacting computing system is infeasible. Wegner [3] proves this ba-
sed on the fact that computing systems using interaction are more powerful problem
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solving engines than mere algorithms. Interaction models are even so powerful that
they can be denoted to be incomplete, in the mathematical sense. Completeness ensu-
res that all possible behaviour is modelled. Wegner shows that one cannot model all
possible behaviour of an interaction model and thus formally proving correctness of
interactive models (e.g. self-organising emergent systems) is not merely difficult but
impossible.

The alternative is to use an empirical and scientifically founded method to ana-
lyse the macroscopic behaviour, which is also advocated in [4, 5]. Empirical analysis
requires focussing on relevant properties and ignoring irrelevant ones. Macroscopic
properties are typically quantified with measurable variables which we define as ma-
croscopic variables. Using macroscopic variables, i.e. an incomplete representation of
the system behaviour, is not problematic because physicists achieve their pragmatic
goals of prediction and control also by dealing entirely with incomplete observable
representations.

Section 3.1 focusses on what is important to analyse in self-organising emergent sys-
tems, i.e. which macroscopic variables. Before any analysis is done, the system needs
to be modelled. Section 3.2 discusses the distinction between aggregate-based models
and individual-based simulation models and why the latter is to be preferred. Section
3.3 describes the analysis approach that combines realistic individual-based simulation
models with an existing arsenal of numerical analysis algorithms to analyse the beha-
viour of self-organising emergent systems. And finally, section 3.4 discusses interesting
macroscopic properties in the AGV case.

3.1 Analysis of Self-organising Emergent Systems: Trends

Before the analysis approach is outlined, we first need to define the results that are
expected from the analysis of self-organising emergent solutions. What kind of ma-
croscopic properties and variables are we interested in?

Self-organising emergent systems promise to be scalable, robust, stable, efficient,
and to exhibit low-latency [6], but also behave non-deterministically. Even if the re-
quired macroscopic behaviour is achieved, the exact evolution is not predictable [6].
However, self-organising emergent systems exhibit trends that are predictable. A trend
is defined to be the evolution of the macroscopic behaviour when the average is ta-
ken over a number of system runs. Due to the dynamics of self-organising emergent
systems, robustness is preferred to an optimal macroscopic behaviour. Optimality is
only achieved when the conditions in which the system operates remain rather sta-
tic. But a static situation will never be reached in the presence of frequent changes.
Preferring robustness above optimality implies that most temporal deviations from the
required behaviour are allowed as long as the required behaviour is maintained in a
trend, i.e. in the evolution of the average behaviour. Temporal deviations are often
necessary to explore the space of possibilities, and to counteract the frequent system
changes.

Therefore, the main results expected from an analysis of the macroscopic beha-
viour of self-organising emergent systems are statements about the macroscopic be-
haviour that ensure the required trend in the evolution of that behaviour. We define such
statements as macroscopic guarantees. The analysis approach described in section 3.3
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focusses on the analysis of trends in order to obtain macroscopic guarantees. Other
issues of the dynamics of the system (i.e. microscopic behaviour, frequency of devia-
tions and how large they are, etc) are also important but are outside the scope of this
paper.

3.2 Modelling: Individual-Based Versus Aggregate-Based

Before any analysis is done, a model of the analysis subject (i.e. the macroscopic be-
haviour) is needed. Generally, there are two kinds of models. First, there are so called
aggregate-based models which are constructed using macroscopic variables as building
blocks and defining the relationships between those variables. One implicitly assumes
that the evolution of the macroscopic variables is the result of the behaviours of in-
dividuals in the system. Traditionally such models are equation-based models where
the evolution of an equation represents the evolution of the macroscopic behaviour. Se-
cond, there are individual-based models which consist of a set of agents that explicitly
encapsulate the behaviours of the various individuals that make up the system. The
macroscopic behaviour is then observed by running a simulation of the model.

In the context of self-organising emergent systems, individual-based models have
a number of advantages with respect to equation-based models (see [7]). The most
relevant advantages are:

– Individual-based models are easier to construct. They are a natural 1-on-1 map-
ping between the system and the model. Often such a model just equals the sys-
tem. Individual-based models are appropriate for domains characterised by a high
degree of localisation and distribution which is the case with self-organising emer-
gent systems. Equation-based models are often infeasible because such mathema-
tical formal models are impossible to construct for complex interacting systems as
discussed at the beginning of section 3 and in [3]. Even if they are possible, the
model would be too complex for reasonable manipulation and comprehension.

– Individual-based models make it easy to adjust the model in order to play “what-if”
games without translating into or constructing a new equation-based model.

– Equation-based models may yield less realistic results compared to an individual-
based model. This is mainly due to the simplification that is often required to
construct an equation while every detail in the individual behaviours can have a
significant impact on the macroscopic result. For example, Wilson [8] offers a de-
tailed study that compares individual-based models and equation-based models for
a predator-prey system and finds that the equation-based models can result in qua-
litatively different behaviours compared to the real behaviour, especially due to the
stochastic behaviour in the individual-based simulation.

On the other hand, equation-based models are very popular mainly due to the availabi-
lity of a whole arsenal of numerical tools and techniques for analysing system
dynamics. In contrast, individual-based models lack such scientific techniques. Mere
observations of individual-based simulations only results in reliable guarantees if a lot
of simulations are executed for a long time. In the context of self-organising emergent
systems, simulations are expensive and thus the amount of simulation time needs to be
minimised.
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Parunak [7] argues that one should choose for either individual-based modelling or
for equation-based modelling depending on the problem at hand. However, the ana-
lysis approach described in section 3.3 combines the advantages of both approaches,
i.e. realistic individual-based simulation models and aggregate-based numerical ana-
lysis. The need for equations is eliminated and the simulation process is accelerated,
i.e. according to the the goal of the analysis algorithm the amount of expensive simu-
lation time is limited to only essentially necessary simulations.

3.3 “Equation-Free” Macroscopic Analysis

This paper uses a “equation-free” macroscopic analysis approach [9, 10], that com-
bines numerical analysis algorithms and realistic individual-based simulation models.
Traditionally, numerical analysis is applied to equation-based models. The macrosco-
pic behaviour is modelled by an equation (a macroscopic equation) and numerical al-
gorithms are used to obtain quantitative statements about the macroscopic properties.
However, as discussed earlier, in complex and dynamical systems, deriving a macros-
copic equation is often not possible, unless the system is very simple. The “equation-
free” approach resolves this issue by replacing the equation-based model by a realistic
individual-based simulation model. This approach also analyses simulation measure-
ments, but, in contrast to mere observation of simulation results, the numerical analysis
algorithms acquire the results themselves by steering the simulation process towards
the algorithm’s goal. For example, a numerical algorithm could have as its goal to find
a steady state behaviour if present, i.e. the measured behaviour converges to a single
value. Another goal could be to extrapolate the behaviour as far as possible in time.
The advantage is that the results are calculated on the fly and only those simulations
are executed that are actually needed to obtain a specific result. The latter reduces the
computational effort drastically compared to mere simulations where one typically si-
mulates for a huge number of time steps starting from time step 0. The results are of
equal or even better scientific value as the equation-based analysis because the same
scientific numerical algorithms are used and possible discrepancies between the model
and the real system dynamics (e.g. [8]) are avoided by using a realistic individual-based
model . Note that numerical algorithms assume a rather smooth behaviour (i.e. a rat-
her continuous evolution over time). As described in section 3.1, for self-organising
emergent systems, the main focus is on analysing trends which are expected to evolve
gradually.

The approach. The “equation-free” macroscopic analysis approach was proposed in
[9, 10]. The observation is that most numerical techniques have no explicit need for the
macroscopic equation; all they need is a routine that evaluates the equation for a given
value of the macroscopic variables. Once the equation evaluations are replaced with a
suitable simulation, all the numerical analysis algorithms can be readily applied.

To achieve this, the following procedure (illustrated in figure 2), called a “macrosco-
pic time-stepper” [9], is performed. First the initial values (xi) for all the macroscopic
variables under study are supplied to the analysis algorithm. Then, given those values,
the initialisation operator (init) initialises a number of simulations accordingly, i.e.
such that a measurement of the macroscopic variables after initialisation equals the gi-
ven initial values. Because there are multiple ways to initialise a simulation for the same
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value of a macroscopic variable, these “degrees of freedom” need to be initialised ran-
domly in multiple initialisations. Then the simulations (simulate) are executed for
a predetermined duration using the individual-based simulation code. At the end, one
measures (measure) the averages over all simulations of the values of the macros-
copic variables (xi+1), which are given to the analysis algorithm as a result. As such,
the equation and its evaluation are replaced by the simulation code. Then the analy-
sis algorithm processes the new results to obtain the next initial values. The algorithm
itself decides on the configuration of the simulations such as the initial conditions and
the duration. The init-simulate-measure cycle is repeated until the analysis
algorithm reaches its goal.

There exists a whole arsenal of numerical algorithms to analyse system dynamics.
One example is called the projective integration algorithm where the goal is to make
a considerable acceleration of the simulations over time by minimising the number of
needed simulation steps through extrapolation. Figure 3 illustrates the basic idea. First
an initial value x1 for the measured macroscopic variable is chosen by the analysis
algorithm. Using the initial value x1, a (set of) simulation(s) is initialised with micros-
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Fig. 4. Equation-Free Newton Analysis

copic value(s) X1 (i.e. init operator on figure 3) and executed for a certain duration.
At some points in time, one measures the new value for the macroscopic variable (i.e.
measure operator on figure 3). The measure operator is repeated for a number of ti-
mes such that enough successive values xk are available for the projective integration
algorithm to make the extrapolation step that skips m time steps of simulation. As such,
a new value xk+1+m is estimated with extrapolation, using a number of measured va-
lues (xk and xk+1 in figure 3). Starting from the new value xk+1+m the process is
repeated by initialising new simulations with microscopic value(s) Xk+1+m. As such
an acceleration over time is achieved.

Simulations can also be accelerated in other ways. Suppose the goal is to obtain the
steady state behaviour, i.e. we look for values of the macroscopic variables that remain
constant as time evolves. Instead of computing the time evolution from time step 0 until
the system stays at the steady state long enough, one uses numerical procedures that
determine steady states in a more direct and efficient way, e.g. Newton’s algorithm [11].
Denote the macroscopic time-stepper starting from an initial macroscopic value xi,
performing a simulation for a fixed duration, and measuring the new macroscopic value
by Φ(xi). Denote the measured value of the macroscopic variable after the simulation
as xi+1 = Φ(xi). The steady state x∗ is then computed by solving the equation

Φ(x∗) − x∗ = 0 (1)

numerically by Newton’s algorithm. This iterative method is illustrated in figure 4. The
x-axis contains the initial values xi and the y-axis the differences |xi − Φ(xi)| bet-
ween the initial and the measured values for one cycle of the macroscopic time-stepper.
First one chooses two initial values x1 and x2 close to each other. For each of them
a init-simulate-measure cycle is done to get the measured values. Through
these measured values an estimation for the derivative of the plot in figure 4 is used
to extrapolate to a new estimation x3 for the steady state. Then the cycle is repeated
(x3 - x6) until the conditions and thresholds of the Newton algorithm decide to have
reached a steady state x7.

In contrast to mere observation of simulation results, only a limited set of rather
short simulations are necessary to generate consecutive approximations for the steady
state and a scientific algorithm objectively decides on the accuracy of the result. Note
that the due to the equation-free approach equation (1) itself is not required. Newton’s
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algorithm only needs the evaluation of the equation at certain points in time and this
is replaced by a suitable simulation measurement. Following the same equation-free
principle, e.g. in the presence of parameters, more general tasks, such as parameter
optimisation or control can be performed as well [9]. As such, a more focussed and
accelerated simulation-based analysis approach, guided by the analysis algorithm’s
goal, is used to obtain more reliable and valuable results than mere observation of si-
mulation results. As such the proposed method constitutes a bridge between classical
numerical analysis and microscopic (e.g. agent-based) simulation.

Road Map. There are a number of steps needed for the equation-free approach to work.
An overview of is given with ant foraging based on pheromones as an example:

1. Identification of macroscopic properties. The goal of the analysis approach is to
systematically acquire results that give macroscopic guarantees. A systematic ap-
proach often implies that one divides the problem into manageable subproblems.
The macroscopic behaviour of a self-organising emergent system typically consists
of a number of macroscopic properties that have to be maintained. For the ant fo-
raging example, macroscopic properties such as the amount of food gathered, the
directed movement of the ants, and the shape of the pheromone path are important.
In a first step, each of the macroscopic properties are considered separately in the
analysis approach and one has to identify which properties are important for the
considered case study (examples for the AGV case are given in section 3.4).

2. Identification of macroscopic variables. In the context of self-organising emergent
systems, the challenge is to find variables that are measures for the macroscopic
properties under study. In other words, a quantification of the macroscopic pro-
perties in terms of measurable variables is needed. For example, using entropy to
measure the concentration of ants on pheromone paths or to measure how focussed
ants choose a direction is a possibility [12].

3. Related macroscopic variables. Are there other variables for macroscopic proper-
ties that influence the property under study? If so, then these variables have to be
incorporated into the analysis process. Otherwise, the evolution of the system is not
correctly and completely represented and analysed. An underlying assumption of
the equation-free analysis approach is that a set of measurable variables are found
that offer an adequate description of the macroscopic system dynamics. For exam-
ple, only entropy of the concentration of ants is not enough. This variable omits the
evolution of the pheromones which also influence the ant-movement. Therefore,
variables are needed that capture the macroscopic evolution of the pheromones.

4. Microscopic variables. For each macroscopic variable, the corresponding variables
of the simulation at the level of the individual entities in the system, that influence
the macroscopic variable need to be identified. With ant foraging, this will include
variables such as the exact positions of the ants, the strengths and positions of
pheromones, and if an ant holds food or not.

5. Measurement operator. Define a measurement operator that measures the macros-
copic variables from the microscopic variables in the simulation.

6. Initialisation operator. An operator needs to be defined that allows to initialise the
microscopic variables of the simulation or multiple simulations to reflect the given
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values for the macroscopic variables. When there are degrees of freedom in the
initialisation, these are initialised randomly and multiple simulations are considered
to average this randomness. For example, re-initialising the ant system requires
positioning each ant but given the concentration of ants, the exact positions allow
some degrees of freedom.

7. Micro-macro scale separation. For the equation-free approach to work and to be ef-
ficient, it should be checked that the microscopic variables evolve on a much faster
timescale than the macroscopic variables that determine the macroscopic evolution.
Thus, changes in the state of the individual entities in the system (e.g. movement
of ants) need to be fast compared to the evolution of the overall system behaviour
(e.g. changes in pheromone path shape or ant concentration). If this is not the case,
then any error introduced by the extrapolation and/or initialisation procedure could
significantly influence the results and hence create errors.

8. Define the different steady scenarios to analyse. A macroscopic guarantee that
holds in all possible conditions in which a system can be executing is difficult,
if not impossible to give. A steady scenario is defined as a setting for the system
in which certain assumptions are made about the operational conditions (i.e. initial
conditions, possible changes, and the frequency of change). This step of the road
map identifies the system parameters that need to be modified in order to cover the
range of possible operational conditions for the system. For example, one can con-
sider steady scenarios where the system has a high utilisation load, a low utilisation
load, or a scenario where there is a frequent oscillation between high and low uti-
lisation loads. In the ant foraging example, parameters such as the number of ants
involved, the evaporation rate of the pheromones, and the amount of food present
can be modified. As a consequence, macroscopic guarantees are always given with
respect to a specific steady scenario and for a specific macroscopic property (see
step 1 of road map). A complete analysis result of the macroscopic behaviour then
consists of multiple macroscopic guarantees.

9. Analysis algorithm. In the end, an analysis algorithm is to be chosen. Depending
on the kind of data and the goals, e.g. finding the steady state behaviour, optimising
the value of a system parameter (e.g. which evaporation rate is optimal for a cer-
tain scenario), controlling the operational modus, one selects a suitable numerical
analysis algorithm (e.g. projective integration, Newton’s method).

With self-organising emergent systems, an open issue is understanding how the ma-
croscopic behaviour is accomplished by the individual entities. There is a gap bet-
ween the result seen at the macroscopic level and the rules at the microscopic level
that cause that result. Some of the steps in the road map are far from trivial, because
some knowledge on how to bridge the micro-macro gap is required. Especially defi-
ning the measurement and initialisation operators is challenging. This requires to know
how to represent a macroscopic property as a variable, how to measure it from the mi-
croscopic level and how to initialise a microscopic simulation to reflect a macroscopic
variable. However, a successful application of the “equation-free” analysis road map
can result in new insights in how the macroscopic level is related to the microscopic
level. And, as shown in section 3.4, the approach offers the ability to check if a cer-
tain set of macroscopic variables completely captures the evolution of the macroscopic
property.
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3.4 Macroscopic Variables in the AGV Case

In each application domain, the important macroscopic properties will be different.
The requirements that have to be achieved by the macroscopic behaviour determine the
important macroscopic properties and the desired guarantees about them. In the AGV
case a number of issues are important, some examples:

– Distribution of AGVs over the factory floor is a macroscopic property from which
one could require that on average the AGVs are equally distributed over the factory
floor, i.e. a maximum coverage. In a recent paper [13] we used a spatial entropy
measure as a macroscopic variable that reflects the distribution of AGVs.

The results validated the described analysis approach. For example, in
figure 5(a) the evolution of the average entropy during normal begin-to-end simu-
lations is shown, i.e at each time step the average over 100 runs is taken. In figures
5(b) and 5(c) the same evolution is shown but obtained in two different ways. A
first simulation process was executed in which simulations are done over 250 time
steps, then the set of measured macroscopic variables (including entropy) is used to
initialise a new set of simulations and again simulations of 250 time steps are done,
and so on (figure 5(b)). The results show that a simulation based on re-initialisation
with the chosen set of macroscopic variables reflects the correct average evolution
compared to figure 5(a). Thus, the re-initialisation based simulation process allows
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(a) A normal begin-to-end simulation
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(c) An extrapolated simulation

Fig. 5. Different simulation processes for the Distribution of AGVs reflected by the average
spatial entropy (Eavg) evolution (high entropy is equal distribution, low entropy is unequal
distribution)



Development of Self-organising Emergent Applications 149

to check if a chosen set of macroscopic variables is enough to reflect the evolution
of the system, i.e. there are no other macroscopic variables needed to have a repre-
sentative analysis (see step 3 of Road Map).

A second simulation process was executed in which the projective integration
algorithm was used averaged over 100 simulation runs with a simulation duration
and extrapolation step of 250 time steps. The results in figure 5(c) show that one
can analyse the evolution of the average entropy with half the simulation time nee-
ded than normal begin-to-end simulation. As shown on figure 5, the distribution
evolved to a steady state behaviour, i.e. a stable and almost equal distribution of the
AGVs over the factory floor is achieved. More details can be found in [13]. Apply-
ing Newton’s algorithm (see section 3.3) allows to confirm that this is a steady state
behaviour scientifically (i.e. more accurate than mere observation) with only a few
simulations.

– Throughput is the important characteristic in the AGV case. Throughput is defi-
ned as the number of packets transported in a certain time span (e.g. one hour).
The challenge here is to identify macroscopic variables that allow to represent and
measure the throughput evolution. Because throughput is a characteristic expressed
over time and because the analysis approach expects the ability to measure the ma-
croscopic variables at each time step, time-independent macroscopic variables are
needed from which one can calculate the throughput as a post-analysis step.

A possible set of macroscopic variables is the following:

• The number of packets in transport (NBPT ), i.e. the number of AGVs
currently holding a packet.

• The number of packets in the queues at the pick-up locations (NBPQ). Each
pick-up location has a queue in which packets arrive. NBPQ is the sum of all
queue lengths.

Assume that packets arrive in the pick-up location queues at a fixed arrival rate
ARΔt, i.e. the number of packets arriving in a time span of Δt. Then the throughput
can be calculated as follows. Define the queue growth rate as the increase or decre-
ase of total queue length in a time span of Δt, i.e. QRΔt = NBPQ,t −NBPQ,t−1
with NBPQ,t the total queue length at time t. If the number of packets in trans-
port is rather constant (i.e. NBPT = cte) then throughput is defined as TΔt =
ARΔt − QRΔt. Another possible approach to calculate the throughput is to count
the number of packets that are delivered at drop-off locations in a time span Δt. Ho-
wever, the number of drop-offs is a time dependent variable and re-initialising based
on this variable at one moment in time is not possible and useful. The calculation
given above only uses time independent variables, i.e. real state of the system.

It is clear that the biggest challenge in applying the analysis approach is to find
suitable macroscopic variables that reflect the evolution of macroscopic properties for
which one needs certain guarantees. Based on macroscopic variables a re-initialisation
of a simulation at one moment in time is required. So, one seeks to get time inde-
pendent variables. The intention of this paper is to give an idea of how the approach
can be applied. Further analysis results that actually give guarantees are for a future
publication.
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4 Engineering Based on Analysis Results

The biggest problem with engineering self-organising emergent systems is the lack of
a systematic approach to build a solution that meets the requirements. Despite some
efforts (e.g. [14, 15]) to find a systematic engineering approach, finding an approach
that starts from the macroscopic requirements and systematically constructs a system
by deriving the behaviours of the individual agents in the system from the macroscopic
requirements seems infeasible. Therefore, a combination of creatively building a solu-
tion and analysing it based on scientifically founded experimental methods is promi-
sing. Traditional engineering design methods tend to be based on a bottom-up approach
in which known components are assembled into subsystems from which the system is
constructed and then tested for the required properties. The design is modified in an ite-
rative manner until the system meets the requirements. As discussed in [4, 5], a formal
design method often can not do the job and the authors argue that such a method does
not exist. One needs an experimental scientifically founded method.

We propose an integration of the systematic analysis approach, which we descri-
bed earlier, into the engineering process. First of all, as a creative activity, one builds a
first prototype of the system based on experience and combining existing mechanisms
(e.g. [16]) and guidelines (e.g. [15]) to achieve a self-organising emergent system. Then
one systematically analyses the system with respect to the wanted macroscopic requi-
rements using the analysis approach described above. Feedback from that analysis is
then used in a next engineering cycle to adjust and tune the solution in order to syste-
matically evolve towards a final solution that meets all the requirements. Of course, the
feedback obtained through the analysis of self-organising emergent systems can also
result in more experience and guidelines to use in future engineering processes.

Using the above analysis approach extensively in an engineering process gives a
number of possibilities. Some examples are:

– Bifurcation Analysis based on Parameters: As explained in section 3.3, the analysis
approach allows numerical analysis algorithms to directly steer the simulation pro-
cess in order to obtain simulation results on the fly and as efficiently as possible.
One such analysis algorithm is a so called bifurcation analysis. Based on a certain
parameter and for a given macroscopic variable the algorithm analyses what the
influence of that parameter is on the macroscopic behaviour, i.e. on the macrosco-
pic variable. For example, in the AGV case the number of AGVs used could be an
important parameter. The results can then indicate how many AGVs are ideal for a
given system to meet its requirements as best as possible and what happens when
the number of AGVs goes beyond the ideal range of values. Also, in the throughput
example (see section 3.4) the arrival rate ARΔt is an interesting parameter in order
to know for which utilisation load a certain solution performs within acceptable
boundaries. Such results are useful feedback to systematically tune and re-engineer
a solution for the AGV case study.

– Comparison and Evaluation of existing Decentralised Mechanisms: In today’s self-
organising emergent systems a number of decentralised mechanisms are used, of
which a lot are inspired by nature [16] (e.g. pheromones, gradient fields, etc.). Eva-
luating each of the decentralised mechanisms with respect to for example non-
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functional and other characteristics (scalability, flexibility, reaction-speed to chan-
ges, communication bandwidth used, etc.) allows a more precise comparison of
those mechanisms. Also, each mechanism has a number of parameters one has to
tune (e.g. the evaporation rate for digital pheromones). An analysis can be done of
the influence of the parameters and in which context which parameter range is most
suitable. Further, when engineering a self-organising emergent system, this infor-
mation will guide the choice of appropriate mechanisms for the problem at hand
and thus contribute to a more systematic engineering of such systems.

Exploiting such possibilities integrates the analysis approach into the engineering
process such that a constant feedback loop between analysis and engineering shapes a
self-organising emergent solution. In the end, a systematic simulation-based enginee-
ring process where scientific analysis and feedback are essential can be achieved.

5 Conclusion and Future Work

It is clear that the way to systematically build a self-organising emergent system remains
an open issue. However, before even considering a self-organising emergent system in
an industrial context, a systematic analysis approach is needed that gives guarantees that
the required coherent macroscopic behaviour is achieved and maintained. Because for-
mal or analytic proofs are infeasible and because mere observation of simulation results
is not reliable and scientific enough, the proposed approach combines realistic agent-
based simulations with existing scientific numerical analysis algorithms for dynamical
systems. Compared to mere observation of simulation results, more reliable and valua-
ble results are returned because the analysis algorithm itself obtains the results on the fly
by steering and accelerating the simulation process according to the algorithm’s goal. In
order to also achieve a more systematic engineering approach, it was proposed to exploit
the analysis approach during the engineering process such that a constant feedback loop
between scientific analysis and engineering shapes a self-organising emergent solution.

Future work includes applying the approach extensively to the AGV case and other
application domains. Also, there are a number of issues that need to be resolved in
order to make the approach easy applicable. For example, there are no clear guidelines
on how to chose suitable macroscopic variables that reflect the macroscopic properties
under study. Next to making the analysis approach more straightforward, the integration
of that analysis approach into a systematic engineering approach can also be worked out
and be made explicit in for example an engineering road map. Such a road map would
then indicate where in a traditional software engineering methodology the scientific
analysis is situated and where feedback from that analysis is to be used to guide the
engineering process.
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Abstract. The intrinsic complexity of self-organising MASs (multi-agent
systems) suggests the use of formal methods at early stages of the design
process in order to predict global system evolutions. In particular, we eval-
uate the use of simulations of high-level system models to analyse prop-
erties of a design, which can anticipate the detection of wrong design
choices and the tuning of system parameters, so as to rapidly converge
to given overall requirements and performance factors.

We take intrusion detection (ID) as a case, and devise an architecture
inspired by principles from human immune systems. This is based on
the TuCSoN infrastructure, which provides agents with an environment
of artifacts—most notably coordination artifacts and agent coordination
contexts. We then use stochastic π-calculus for specifying and running
quantitative, large-scale simulations, which allow us to verify the basic
applicability of our ID and obtain a preliminary set of its main working
parameters.

1 Introduction

The trend in today information systems engineering is toward an increasing
degree of complexity and openness, leading to rapidly changing requirements
and highly dynamic environments. As a consequence, the cost of system man-
agement is becoming comparable to the cost of the system itself [1]. This phe-
nomenon has led to the challenge of discovering new ways of engineering systems
inspired by social and natural sciences. For instance the Autonomic Computing
initiative tries to face complexity by taking inspiration from the self-regulating
behaviour of the biological processes [1, 2]. Other visions, such as Amorphous
Computing [3] and Spray Computers [4] have sprung sharing the same objec-
tive. Self-organisation is a promising approach to tackle these issues without
explicit pressure or constraints from outside the system: self-organisation is usu-
ally the result of the interaction and coordination at a local level of a set of
agents, each simpler in structure than the global task achieved [5].

In this paper we conduct a preliminary study on methodological aspects of
the engineering of self-organising MASs. Because of the intrinsic complexity of
these systems, and the difficulties in predicting their behaviour and properties,

S.A. Brueckner et al. (Eds.): ESOA 2005, LNAI 3910, pp. 153–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



154 L. Gardelli, M. Viroli, and A. Omicini

we find it crucial to exploit formal tools for simulating their dynamics at the
early stages of design. In the case of self-organising MASs, in fact, this approach
appears to be almost unavoidable in order to nurture evolving ideas and design
choices, and to effectively tune parameters of the final system.

Among the various formal models to specify quantitative aspects of MASs—
based on process algebras [6], Petri Nets [7], and automata [8]—we promote the
use of the stochastic π-calculus process algebra [9]. While it allows for a great
expressiveness in representing key aspects such as interactions and concurrent
activities, π-calculus also features full compositionality and modularity proper-
ties, which are crucial to scale up with system complexity.

This language is basically unexplored in the context of self-organising MASs:
on the one hand, its simulation tools are relatively recent (see e.g. [10]), on the
other, it was primarily inspired by the need of modelling biological systems [11].
However, we show that stochastic π-calculus can be fruitfully applied to the MAS
paradigm as well: as far as stochastic aspects are concerned, the typical com-
plexity of agent internal machinery can be suitably abstracted away, focussing
instead on agent interactions and high-level activity changes. Then, tools like
SpiM (Stochastic PI-calculus Machine [10]) can be effectively used to track the
dynamics of global system properties in stochastic simulations, validating design
directions, inspiring new solutions, and determining suitable system parameters.

In this paper, we apply these ideas to study an intrusion detection (ID) infras-
tructure for MASs, which detects malicious agents in an open context. The so-
lution we consider is inspired by principles of human immune system [12], where
agents resembling lymphocytes are dynamically created and updated with the
goal of detecting malicious behaviours. The infrastructure we devise is based on
the TuCSoN technology [13]1. This allows us to structure a MAS not only in
terms of agents, but also with tuple centres as coordination artifacts [14] and
agent coordination contexts (ACC) as boundary artifacts [15]. Coordination ar-
tifacts are used to model resources in the environment on which (potentially)
malicious agents act upon. ACCs specify and enact the access policies which
each agent is subject to, and can be used to both (i) reify relevant information
about the agent/artifacts interaction, which the lymphocyte agents can inspect
to detect abnormal sequences of actions, and (ii) to abruptly deny malicious
agents to access the MAS environment.

To evaluate the impact of different design choices and parameters of the ID
infrastructure—such as inspection/detection rates, number of lymphocytes, up-
grade policy for lymphocytes, and the like—we simulate the behaviour of differ-
ent scenarios using SpiM specifications.

The rest of the article is structured as follows. In Section 2 we briefly high-
light the main mechanisms and properties of intrusion detection and the human
immune system, and apply them to a general architecture for a MAS based on
TuCSoN. Section 3 motivates the use of π-calculus and its stochastic extension,
providing an application example related to our ID domain using SpiM. In Sec-
tion 4 we examine performance of several scenarios of the MASs infrastructure

1 http://tucson.sourceforge.net
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introduced. Finally, Section 5 concludes providing final remarks and listing main
directions for future research.

2 Human Immune System and a MAS Architecture

In this section we first depict the main aspects of ID systems (IDSs), and then
describe the structure and main functionalities of the human immune system. We
are not concerned about accurately modelling or mimicking the human immune
system, but we rather gather useful principles to engineer secure self-organising
applications, which are then used to sketch a general architecture for MASs
applying some of these concepts.

2.1 Security and IDSs in Information Systems

There are several mechanisms used to protect information systems, but usually
only the basic ones are implemented: (i) authentication, the identity is proved
by the knowledge of a secret (e.g. password) or a physical unique property (e.g.
fingerprint, retina, voice); (ii) authorisation: user actions on the system are
constrained by its role.

However, applications flaws typically cause these methods not to be sufficient
alone [16]. For instance, in operating systems there is a need to use additional
software such as firewalls, antivirus and many other specific tools that must be
configured and kept updated to prevent unplanned attacks. Furthermore autho-
risation policies cannot account for all possible sequences of actions: a specific
sequence might exhibit unexpected side-effects. In particular, it is in general too
expensive and impractical (or even unfeasible) to intercept all emergent harmful
paths at design-time.

As a consequence, automated tools are a very useful support for the detection
of malicious behaviour. In this direction, many efforts have already been spent
in developing IDSs. An IDS tries to detect abnormal behaviour and misuse of a
target software system by observing it and deciding wether actions performed by
a user/agent are symptomatic of an attack [17]. Efficiency of an IDS is evaluated
by three parameters: accuracy (rate of false-alarms), performance (rate of audit
processing), and completeness (rate of missed detection).

Usually IDSs are implemented as expert systems: they synthesise signatures
of malicious behaviours from lists of sequences of actions. However, for gener-
ality, we do not focus here on specific techniques to handle signatures, for they
mostly concern the IDS research community, and are typically very dependent
on the application domain—they differ e.g. in the context of system calls [16, 12],
TCP/IP connection addresses [18], memory accesses, and so on. Rather, we are
concerned about the neat impact of such techniques, expressed in a stochastic
manner, and how they can influence the design of a protection system.

2.2 Human Immune System Overview

The human immune system protects the body against foreign pathogens. We use
the term antigen to refer to any foreign molecule that triggers an immune response
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by the human body. The human immune system consists of many layers each ex-
ploiting several mechanisms to increase the degree of protection. A first kind of
protection is provided by the physiological barriers, i.e. skin, temperature and pH,
that are reactive and non-specific—i.e. not triggered by a specific class of antigens.

The human immune system also provides active mechanisms: the innate and
the acquired immune system. The first is there since birth, and is composed of
scavenger cells (e.g. fagi) wandering in the lymphatic system, which are able
to detect and kill only a fixed subset of antigens. It is not adaptive, hence it is
not able to protect the body from new kinds of antigens. This issue is instead
the main concern of the acquired immune system: it improves during individual
life, learning and memorising new antigens. The acquired immune system is
composed of different types of cells: we consider only lymphocytes for they are
responsible for the main form of immunity.

Lymphocytes are produced in the bone marrow and are sent to mature in the
thymus. There, they are exposed to self-cells (body): if they bind the self-cells
lymphocytes are eliminated. When the process of maturation ends, lymphocytes
are released in the lymphatic systems. Lymphocyte surface is covered with dif-
ferent sets of receptors that are able to bind to different classes of antigens. This
phenomenon, called dynamic coverage, lets the immune system cover part of
the space of antigens (1016) with a sensibly smaller set of lymphocytes (1010).
Receptors are randomly generated by a process of variation and selection. Lym-
phocytes have a short life (about two days), but if during this period they bind to
several antigens they become “memory” and their life is extended. This strategy,
in combination with receptor generation process, allows to discover new antigens
and to apply a faster response if the antigen is met again.

2.3 A General Architecture for MAS Applications

In this section we describe a general architecture for MASs based on the TuCSoN
coordination infrastructure [13], showing an approach to ensure security applying
principles of the immune system—for space reasons we only sketch main design
details.

We consider a system that provides agents with services encoded in terms
of coordination artifacts, i.e. runtime abstractions encapsulating and providing a
coordination service, to be exploited by agents in social contexts expressed by co-
ordination rules and norms [14]. The basic model of coordination artifacts is char-
acterized by (i) a usage interface, (ii) a set of operating instructions, and (iii) a
coordination behaviour specification, which can be exploited by cognitive agents
to rationally use a coordination artifact.

Accesses of agents to these resources is restricted by an authentication proce-
dure. When an agent enters the system an authorisation policy limits its actions
allowing the exploitation of a limited set of services and resources—e.g. those
it has payed for. This is realised by the notion of Agent Coordination Context
(ACC) [19, 15]. An ACC works as agent interface towards the environment: it is
like a control room providing e.g. buttons and displays to an human, which are
the only means by which he/she can interact with the environment. Thus, the
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Fig. 1. A general architecture for a multi-agent system

ACC enables and rules the interaction between the agent and the environment
[19], and it is then able to model security and organisation aspects in MASs
[15]. In particular, the ACC is the right place to put authorisation policies, typ-
ically specified using a Role Based Access Control model (RBAC). The whole
architecture is depicted in Figure 1.

Usually the two mechanisms of authentication and authorisation are consid-
ered to guarantee a sufficient degree of protection. However, as described in
previous section, we instead promote the idea that a dynamic system is better
protected by additional dynamic mechanisms. So we introduce other techniques
inspired by the immune system and previous work on IDSs [16, 20].

As the human immune system has barriers, we consider authentication and au-
thorisation procedures to be information systems barriers. We need an extra layer
to cope with dynamic issues concerning harmful sequences of actions which cannot
be statically identified as such. So we add a layer inspired by the acquired immune
system of humans. Forrest et al. suggested a list of organising principles that should
guide the design of a computer security system: distributability, multi-layering, no
(totally) secure layer, diversity, disposability, autonomy, adaptability, and identity
via behaviour—see [16] for more details on them.

We introduce a class of (distributed) agents, which we call agentLy, to model
lymphocyte task: they should observe the actions performed by agents (auton-
omy) as reified by the ACC in charge of control them. When they detect a
suspicious behaviour (identity via behaviour) they should dispatch an alert mes-
sage to the authority that can trigger the proper response. In our case, this
authority could invalidate the agent ACC, i.e. denying any further access to the
system resources. Each agentLy is able to detect only a subset of the possible bad
behaviours (diversity). If after a time interval it does not detect any attack then
it can be replaced by another one (disposability). The security layer dynamically
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covers the space of possible bad behaviours. The system should be able to learn
and synthesise new signatures of abnormal behaviour (adaptability). As already
stated we do not deal with synthesising these signature, but we encapsulate these
skills in our agentLys and then abstract away from their details.

Now that we have sketched the system architecture and pointed out which
properties could be useful, we are interested in predicting the behaviour of the
system in large-scale scenarios, and the performance factors we should expect.
We try to answer these questions in the following sections.

3 Simulations in π-Calculus

In this section we briefly introduce π-calculus [6] and its stochastic extension
[9]. Then, we present an example of a simple program using the Stochastic Pi
Machine (SpiM) [10].

3.1 The π-Calculus

The π-calculus is a formal model developed to reason about concurrency [6]:
it is a language for describing and analysing systems consisting of agents (or
processes) which interact with each other, and whose configuration of neighbor-
hood is continually changing [21]. The basic entity is a name, which is used as
an unstructured reference to a synchronous channel where messages can be sent
and received. In its simpler version, a process is built from names according to
the syntax:

P ::= 0 |
∑
iεI

πi.Pi | (P |Q) | !P | (νx)P (1)

0 is the empty process. The summation
∑

iεI πi.Pi means that an agent might per-
form any prefix action πi, and correspondingly continues as Pi behaviour: prefix
forms πi are of the kind ȳx (send the name x at channel y), y(x) (wait for a name at
channel y and rename it as x), and τ (perform a silent action). A composition P |Q
represents P and Q executed in interleaved concurrency. A replication !P means
that (infinitely) many copies of P can be executed concurrently (like P |P |....). Re-
striction (νx)P creates the new name x and bounds its use in P .

The version of π-calculus that allows to send/receive a single name only
to/from a channel is called monadic. The polyadic version of the π-calculus
also allows more names in a single communication to be sent/received [21]. The
semantics of π-calculus can be described by a transition system, where the tran-
sition relation P −→ P ′—process P moving to P ′ by the occurrence of an inner
interaction—is defined by operational rules [6].

3.2 On Stochastic Models

In general, each formal model whose semantics is given by a transition system can
be extended to a stochastic version, resorting to the idea of Markov transition sys-
tem [22]. There, each transition P

r−→ P ′ is labelled with a rate r, a nonnegative
real value that scales how the transition probability between P and P ′ increases
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with time. Stochastic models allow for quantitative simulations, for rates can be
used to express aspects such as probability, speed, delays, and so on.

However, from an engineering perspective the choice of which language is used
for describing processes is a crucial one, for the system to be simulated is to be
effectively represented in the language.

Three basic options are available: (i) automata, like finite-state ones, where
the system is described by state-changes and by supporting data-structures (such
as stacks); (ii) nets, like Petri Net, where the system is described by a marking
of tokens spread over a graph; and finally (iii) process algebras, like π-calculus,
where the system is described by a composition of interacting entities. We find
the third approach to be the best suited for describing quantitative aspects
of complex MASs—such as self-organising ones. On the one hand, differently
from automata, process algebras allow to express concurrent activities (agents
in this case). On the other hand, differently from nets, process algebras allow
for full compositionality: this property is particularly relevant, as it allows to
express agents (and artifacts) with different roles separately, and then simply
reuse such definitions to express the whole system model by composition (parallel
composition, summation and replication).

3.3 Stochastic π-Calculus and π-Machine

Priami introduced a stochastic extension to π-calculus [9]. Each channel name
is associated with an activity rate r: the delay of an interaction through that
channel (representing the use of a resource [9]) is then a random variable with an
exponential distribution defined by r. Exponential distributions are used because
they enjoy the memoryless property, i.e. each transition is independent from the
previous one [23]. Given a channel name x, the probability pi of a transition
P

ri−→ Pi representing an interaction through x is the ratio between its rate ri

and the sum of rates of the n transitions through x enabled by P:

pi =
ri∑

j=1..n rj
, 1 ≤ i ≤ n . (2)

We consider the SpiM implementation for the stochastic π-calculus interpreter
[10]. As an example, we want to simulate a simple scenario where agents can
enter and leave a system after being authenticated and authorised. The system
parameters are (i) the number of agents within the system at t = 0, (ii) the
“concentration” of malicious vs. legitimate agents, (iii) the rates at which legit-
imate agents enter and leave the system, and (iv) the rates at which malicious
agents enter and leave the system.

We are simulating the system for 1000 time units. We want to keep the average
number of agents constant so that the entering rate is equal to the leaving one.
Code and simulation results are reported in Figure 2 and 3.

The initial part of the specification introduces channel names—we set e.g.
the small rate 0.1 for agents entering and leaving the system (delayEnter and
delayLeave), and a 70% ratio of legitimate (good) agents vs. malicious (bad)
ones (isGoodEA and isBadEA). In the behavioural part, we instantiate 1000
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1000.0 (* Simulation duration *)

(* Counters *)
new CountBad:1000000.0:<> new CountGood:1000000.0:<>
new isBadEA:300000.0:<> new isGoodEA:700000.0:<>
new delayLeaveG:0.1:<> new delayLeaveB:0.1:<>
new delayEnterG:0.1:<> new delayEnterB:0.1:<>
new EA:<> (* Agent*)
new BEA:<> (* Malicious Agent*) new GEA:<> (* Legitimate Agent *)
new ActionLeaveG:<> new ActionLeaveB:<>
new ActionEnterG:<> new ActionEnterB:<>
new LB:<> (* Signal: malicious agent must leave *)
new LG:<> (* Signal: legitimate agent must leave *)
new InitEA:<int> (* Initialize agents *)
new Timer:<<>,<>>

(* Behaviour *)
( !GEA(); LG()
| !BEA(); LB()

(* Manage the flow of agents (in/out the system) *)
(* 4 timers:

- legitimate agents entering and leaving
- malicious agents entering and leaving *)

| Timer<ActionEnterG, delayEnterG>
| !ActionEnterG(); (CountGood<> | GEA<> | Timer<ActionEnterG, delayEnterG>)
| Timer<ActionEnterB, delayEnterB>
| !ActionEnterB(); (CountBad<> | BEA<> | Timer<ActionEnterB, delayEnterB>)
| Timer<ActionLeaveG, delayLeaveG>
| !ActionLeaveG(); (CountGood() | LG<> | Timer<ActionLeaveG, delayLeaveG>)
| Timer<ActionLeaveB, delayLeaveB>
| !ActionLeaveB(); (CountBad() | LB<> | Timer<ActionLeaveB, delayLeaveB>)

(* Initialize Lymphocytes, Good and Bad agents (t=0) *)
| !EA(); (isBadEA<>; (CountBad<> | BEA<> ) + isGoodEA<>; (CountGood<> | GEA<>))
| !isBadEA()
| !isGoodEA()
| !InitEA(n); if n>0 then ( EA<> | InitEA<n-1> )
| InitEA<1000>

(* Library *)
| !Timer(c,r); (r<>|r();c<> )
)

Fig. 2. Source code of the model of a simple system where malicious and legitimate
agents can enter and leave

agents (InitEA<1000>) and then counted the number the evolution of legitimate
and malicious agents (CoundGood and CountBad), which are those shown in the
plot2. This example is used as basis for developing interesting dynamics in more
complex cases, as developed in the following.

4 Simulating Self-organising Systems

In this section we discuss three scenarios, exemplifying an incremental design
process for our IDS. We refer to the general architecture described in section 2.3
(figure 1). For space reasons the complete simulation code for these examples is
not reported3.
2 The whole description of this code is avoided for brevity.
3 The interested reader candownload them fromthe site: http://www.alice.unibo.it/
download/spim/esoa.zip
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Fig. 3. Simulation of the system in Figure 2

4.1 Scenario 1

Starting from the previous example we add to the system lymphocyte agents
(agentLy), which observe the behaviour of external agents. Its role, already de-
scribed in Section 2.3, is to monitor ACC states to detect wrong behaviours.
Each agentLy performs independently from the others, but they all share the
same parameters. We add to the previous list the following parameters

– the number of agentLys (10)
– the rate at which an agentLy performs inspections (delayInspection:0.5)
– the probability that an agentLy, during inspection, detects an agent as ma-

licious (10%, due to matchP:100000.0 and matchN:900000.0).

The first and second parameter should be dynamically adjusted: for instance if the
system is under attack it can raise its defenses. We consider them as a constant for
the duration of the simulation. The third parameter instead should be regarded as
a contract between the agentLy and the system. The system can replace agentLys
that do not comply with the contract. This can be e.g. realised by making agentLys
have their own ACC, and the infrastructure checking their detection rate.

The chart in Figure 4 shows the results of the simulation. With the chosen
values for the parameters, we observe that the system is able to eliminate the
activity of malicious agents within around 400 time units.

4.2 Scenario 2

In this scenario we introduce the idea that agentLys feature a limited lifetime.
Furthermore we want to model two classes of agentLys which have different
abilities to detect malicious activity. We call the ones which perform better
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Fig. 4. A simulation of a simple system where malicious and legitimate agents can
enter and leave. AgentLys limit the activity of malicious agents.

agentLyA, while the other ones agentLyB. Because an agentLyA performs better
it will be rewarded with a longer lifetime, modelling the memory effect. So we
add the following parameters:

– the probability that an agentLy belongs to class A rather than B (20% due
to isBadL:800000.0 and isGoodL:200000.0)

– the lifetime of the two classes of agentLys (GL<200> and BL<100>)
– the probability that an agentLyA, during inspection, detects an agent as

malicious (30% due to matchGP:300000.0 and matchGN:700000.0)
– the probability that an agentLyB, during inspection, detects an agent as

malicious (10% due to matchBP:100000.0 and matchBN:900000.0).

Figure 4 shows the results of the simulation. With the chosen values for the
parameters the system is able to limit the activity of malicious agents. As ex-
pected, this system performs better than the previous, for now malicious agents
are eliminated in less than 300 time units. Furthermore, by increasing the prob-
ability that an agentLy belongs to class A, we can expect the performance of
detection to increase accordingly.

4.3 Scenario 3

In this scenario we introduce the hypothesis that the types of malicious be-
haviours are not uniformly distributed in the space of possible behaviours. So an
agentLy that has a poor performance must learn from those who perform better.
To account for this phenomenon we modelled the possibility for the system to
clone an agentLyA to replace an agentLyB. This can be realised in our MAS by
imposing in an agentLy’s ACC contract that ineffective agentLys should accept
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Fig. 5. A simulation of a simple system where malicious and legitimate agents can
enter and leave. AgentLys limit the activity of malicious agents. An agentLyA perform
better and has a longer lifetime than an agentLyB.
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Fig. 6. A simulation of a simple system where malicious and legitimate agents can enter
and leave. An agentLyA perform better and has a longer lifetime than an agentLyB. As
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to class A.



164 L. Gardelli, M. Viroli, and A. Omicini

 0

 50

 100

 150

 200

 250

 300

 350

 0  200  400  600  800  1000  1200

n
u

m
b

. 
o

f 
a

g
e

n
ts

 

time

2 - malicious
2- killed

3 - malicious

3- killed
4 - malicious

4- killed

Fig. 7. A comparison in detection performance between the previous simulations

from the infrastructure upgrades on their behaviours—which the infrastructure
takes from effective ones.

Figure 6 shows the results of the simulation. With the chosen values for the
parameters the system is able to further limit the activity of malicious agents—
within still remains similar to the previous case.

4.4 Results Comparison

In Figure 7, we merged the previous charts to evaluate the increase of detection
performance. As we would expect there is an evident increase of performance
between the first and second scenario, while a minor increase occurs between the
second and the third. In general, while the third solution appears more promising,
the actual results are strictly dependent from the value of parameters, hence
more experiments are needed in order to evaluate whether the possible gains
worth the considerable infrastructural support required to simulate lymphocyte
learning. In fact, if the two classes of agents have a similar detection rate, the
third solution might add only overhead to the system.

5 Conclusion

In this paper we have started putting together the elements of a framework for
engineering self-organising applications: featuring MASs composed by agents and
artifacts [14, 15], and simulations in a stochastic process algebra settings to tune
system parameters at design-time. We used an intrusion detection system for
TuCSoN as a mere explanatory case—as more comprehensive ones have already
been explored (see e.g.[24, 12]).
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The system depicted being based on the TuCSoN coordination infrastructure,
it features the remarkable notion of ACCs, which enable to control agent ac-
tions, reify information on action sequences (to be read by the infrastructure
and/or other agents), prevent agent actions from a given point in time. For the
architecture and general principles we took inspiration from the human immune
system. For the methodology, we relied to formal simulation and modelling via
stochastic π-calculus, which—even though is a quite new language in the context
of the MAS community—showed its effectiveness as a design tool.

Whereas the experiments we realised are still preliminary, we believe they gen-
erally emphasise the ability of the proposed approach to help the MAS developer
to anticipate design decisions and strategies at the early stages of design—before
actually developing prototypes and testing them.

Our plan for future works includes exploiting our approach to devise an actual
implementation of intrusion detection systems on top of TuCSoN-based MASs.
Other than evaluating the actual strategy to implement (as well as its distinctive
parameters), we plan to explore the implications of extending such an approach
to a network of nodes. In this paper we have only been concerned with self-
organisation mechanisms: in future works we will explore the dynamics that
causes new phenomena and behaviours to emerge. For example the uniqueness of
the human immune system provide the human species with a greater probability
to survive to a specific antigen. This is an emergent property which could be very
important for distributed system. Integrating agent cognition and stochastic
simulation models is a longer-term research direction as well.

References

1. Horn, P.: Autonomic computing: IBM’s perspective on the state of information
technology (2001)

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(2003) 41–50

3. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Thomas F. Knight, J.,
Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Com-
munications of the ACM 43(5) (2000) 74–82

4. Zambonelli, F., Gleizes, M.P., Mamei, M., Tolksdorf, R.: Spray computers: Fron-
tiers of self-organization for pervasive computing. In: 13th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE’04), Washington, DC, USA, IEEE Computer Society (2004) 403–408

5. Heylighen, F.: The science of self-organization and adaptivity. In: Knowledge
Management, Organizational Intelligence and Learning, and Complexity. The En-
cyclopedia of Life Support Systems. EOLSS Publishers (2003)

6. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II.
Information and Computation 100(1) (1992)

7. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut für Instru-
mentelle Mathematik, University of Bonn, Bonn, Germany (1962)

8. Bryans, J., Bowman, H., Derrick, J.: Model checking stochastic automata. ACM
Trans. Comput. Logic 4(4) (2003) 452–492

9. Priami, C.: Stochastic pi-calculus. Computer Journal 38(7) (1995) 578–589



166 L. Gardelli, M. Viroli, and A. Omicini

10. Phillips, A.: The stochastic Pi machine (SPiM) (2005)
http://www.doc.ic.ac.uk/~anp/spim/.

11. Phillips, A., Cardelli, L.: Simulating biological systems in the stochastic pi-calculus
(2004)

12. Forrest, S., Hofmeyr, S.A., Somayaji, A.: Computer immunology. Communications
of the ACM 40(10) (1997) 88–96

13. Omicini, A., Zambonelli, F.: Coordination for internet application development.
Autonomous Agents and Multi-Agent Systems 2(3) (1999) 251–269

14. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd international Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2004). Volume 1, New
York, USA, ACM (2004) 286–293

15. Omicini, A., Ricci, A., Viroli, M.: RBAC for organisation and security in an agent
coordination infrastructure. Electronic Notes in Theoretical Computer Science
128(5) (2005) 65–85 2nd International Workshop on Security Issues in Coordina-
tion Models, Languages and Systems (SecCo’04), 30 August 2004. Proceedings.

16. Somayaji, A., Hofmeyr, S., Forrest, S.: Principles of a computer immune system.
In: 1997 Workshop on New Security Paradigms (NSPW ’97), New York, NY, USA,
ACM Press (1997) 75–82

17. Debar, H., Marc, D., Andreas, W.: Towards a taxonomy of intrusion-detection sys-
tems. Computer Networks: The International Journal of Computer and Telecom-
munications Networking 31(9) (1999) 805–822

18. Forrest, S., Hofmeyr, S.A., Anil, S., A., L.T.: A sense of self for Unix processes. In:
1996 IEEE Symposium on Security and Privacy, Los Alamitos, CA, USA, IEEE
Computer Society (1996) 120–128

19. Omicini, A.: Towards a notion of agent coordination context. In Marinescu, D.C.,
Lee, C., eds.: Process Coordination and Ubiquitous Computing. CRC Press (2002)
187–200

20. Hofmeyr, S.A., Forrest, S.: Immunity by design: an artificial immune system. In:
Genetic and Evolutionary Computation Conference (GECCO’99). (1999) 1289–
1296

21. Milner, R.: The polyadic π-calculus: a tutorial. In Hamer, F., W., B., Schwicht-
enberg, H., eds.: International Summer School on Logic Algebra of Specification,
Springer (1993)

22. Brinksma, E., Hermanns, H.: Process algebra and Markov chains. In: Lectures
on formal methods and performance analysis: 1st EEF/Euro Summer School on
Trends in Computer Science. Springer (2002) 183–231

23. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25) (1977)

24. Hassas, S., Foukia, N.: Towards self-organizing computer networks: A complex
system perspective. In Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F.,
Zambonelli, F., eds.: 1st International Workshop on Engineering Self-Organising
Applications (ESOA 2003). (2003) 77–83



Mesoscopic Modeling of Emergent Behavior -
A Self-organizing Deliberative Minority Game

Wolfgang Renz and Jan Sudeikat

Multimedia Systems Laboratory,
Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

Tel. +49-40-42875-8304
{wr, sudeikat}@informatik.haw-hamburg.de

Abstract. Recent research discussed several approaches to understand
the relation between microscopic agent behavior and macroscopic multi–
agent system (MAS) behavior. A structured methodology to derive these
models will have impact on MAS design, evaluation and debugging.
Current results have established the description of macroscopic behav-
ior, including cooperation, by Rate Equations derived from markovian
agent–states transitions. Emergent phenomena elude these descriptions.
In this paper, we argue that mesoscopic modeling is needed to provide
appropriate descriptions of emergent system behavior. The mesoscopic
agent states reflect the emergent behavior and allow for a deliberative
implementation of the rules and conditions which cause the MAS to
self–organize as wanted. In a case study, we construct such a mesoscopic
model for the socio-economic inspired Minority Game. The mesoscopic
description leads us to a deliberative implementation, which exhibits
equivalent self–organizing behavior, confirming our results.

1 Introduction

Multi–agent system (MAS) research has developed a number of reliable agent
platforms, drawing attention to the methodical development of applications (as
described in [1],[2]). Two paradigms for MAS design dominate current research
efforts. A number of methodologies for the development of agent-based applica-
tions (surveyed in [3],[4],[5]) were proposed. The majority of these focus on delib-
erative agent architectures and therefore concentrate on modeling and analysis of
individual agent behaviors. In opposition to these, reactive agents show adaptive
and self–organized behavior, which leads to powerful applications [6],[7],[8],[9].
Recently the equivalence of these two approaches has been questioned by the
observation of Universality [10].

Recent research has developed means to infer mathematical descriptions of
the macroscopic system behavior from the microscopic agent behaviors. Being
able to quantify the expected macroscopic behavior of MAS will have impact
on system evaluation and verification. To enable the purposeful engineering of
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MAS, it is not only necessary to ensure the correct functionalities of the partic-
ipating agents [11],[12], but also to verify that the system as a whole behaves
as intended [13]. Current engineering approaches are based on systematic anal-
ysis of the macroscopic system behavior using simulations [14], to enable the
identification of mechanisms, which ensure behavior and performance [15].

For MAS composed of homogeneous reactive agents, e. g. foraging robots [16],
the microscopic agent behaviors directly reflect he overall system behavior. If
agents have a fixed number of executable behaviors or states (e.g. searching and
homing), the system can be described by the fraction of agents executing either
of them. Therefore the rates of state transitions need to be defined. According
to these simplifications, Rate Equations have been established to describe time
dependent changes in the macroscopic behavior of MAS, which are composed of
reactive and/or adaptive agents [16],[17],[18],[19]. These equations result from
Master Equations describing the underlying Markov processes of these systems.
These mathematical techniques have been successfully applied to study numer-
ous examples, including aggregation [20], task allocation [17], foraging [21] and
coalition formation [18].

Enhanced capabilities of the individual agents complicate these stochastic
descriptions. In [16], modeling of agent populations using memory-based adap-
tion [22] has been introduced. If decisions of agent are based on the past m
states, the system can be represented as a generalized Markov process of order
m. It has been shown that averaging over histories can be used to handle these
kinds of systems [22].

Other complications to these kinds of stochastic descriptions arise from dy-
namically developed system behaviors. Cooperation, self–organization and emer-
gent phenomena form during system development. The distinction between the
later two is often complicated. Here, we adopt working definitions from [23].
Therefore, we understand self–organization as a dynamical and adaptive pro-
cess, where structures arise and maintain, without external control. Systems
exhibit emergence when microscopic interactions lead to novel artifacts (emer-
gents), which dynamically arise at the macroscopic level.

In this paper we introduce mesoscopic modeling to derive mathematical de-
scriptions of systems exhibiting emergent behavior. A mesoscopic modeling level
introduces hidden agent states. We name these hidden, because they are not di-
rectly observable in the macroscopic behavior of the individual agent at each time
step. This refinement to the above summarized techniques allow the description
of emergent phenomena. In addition, we propose a method for construction of
macroscopic equivalent reliable self–organized systems. The derived system uses
a deliberative architecture for reactive planing and exhibits equivalent global
behavior by self–organization. The construction is exemplified for a stochastic
version of the well studied Minority Game (MG) [24], exhibiting working behav-
ior which maximizes the macroscopic system performance to a great extend.

The next section gives a brief overview of recent approaches to model the
macroscopic behavior of MAS, followed by an introduction of our framework to
derive mesoscopic models of system behaviors. Section three introduces a case
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study, the socio-economic inspired MG. We present a stochastic implementa-
tion of this game, its mesocopic description and a deliberative implementation
which resembles the derived mesoscopic variables. Finally, we conclude and give
prospects for further work.

2 Microscopic Models, Macroscopic Descriptions and
Mesoscopic Modeling

In this section, the underlying conceptual ideas are introduced and briefly dis-
cussed. We summarize established techniques to infer macroscopic models and
relate them to our mesoscopic approach. A more detailed description of meso-
scopic modeling is given in a case study with Minority Games in the next section.

2.1 Macroscopic Description of Reactive Multi-agent Systems

Recent work [16],[17],[18],[19] showed how Rate Equations can be inferred from
individual agent behavior. Reactive Agents can be modeled as Finite State Au-
tomaton (FSA). Agents can pursue different behaviors during their life-cycles,
related to certain states in an imaginary FSA. In order to describe the overall
system behavior, states are identified which have impact on the observables in
the overall system. When it is possible to describe the probabilities of transitions
between these states, Rate Equations for the observables can be written down
directly. The global behavior of a MAS is characterized by the fractions of agents
executing in certain microscopic states inside the FSA. To put it in other words,
the FSA of the individual agents lead to an aggregate automaton, in which the
states represent the numbers of agents executing that action [16],[25].

The Rate Equations for the occupation numbers of the microscopic model,
namely the individual reactive agent, can be derived postulating an underlying
time–continuous Markov process. These Rate Equations are impaired by three
sources of complication. First, correlations between agent states vanishes. These
can be spatial/time correlations or subtle structures of correlations. Secondly,
the implicit mean–field approach eliminates fluctuations or variances of the num-
ber of agents in each state. Finally, discrete time effects are neglected. Fast and
dynamic interchange between states can produce strong changes in occupation
numbers on short time scales, leading to discrete time oscillatory behaviors rel-
evant for the macroscopic description.

These complications prevent the direct description of emergent structures [23]
by simple Rate Equations in many cases. E.g. in traffic systems wave phenomena
emerge as soon as the stationary flow gets unstable. These can not be described
by the average occupation numbers of cars, but spatio–temporal variations need
to be included in the description. Similarly, freely movable swarms can be de-
scribed by radial distribution functions for the agent distance only, whereas
angular correlations have to be introduced when the agents obstruct each other
and hinder free motion leading to spatial structures. Below we will examine the
MG where persistent short time behaviors of agents are correlated with their
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gameplay decisions. Quantities characterising the emergent structures have to be
introduced in the system description. Thus, additional possibly hidden variables
need to be included. Models keeping the relevant fluctuations but otherwise ab-
stracting from microscopic details we call mesoscopic models in agreement with
the statistical modeling community [26].

2.2 Mesoscopic Modeling

The dynamic evolution of MAS can exhibit emergent behavior not directly vis-
ible in its microscopic construction. As argued above, such behavior cannot be
derived from macroscopic Rate Equation obtained from the Master Equation by
a simple mean–field assumption [18]. But this is not our primary interest in the
present paper.

Instead, we focus on the construction of less microscopic models with equiv-
alent macroscopic behavior. Namely, software is engineered in controlled ways
to guaranty certain macroscopic behaviors. To allow engineering, it is necessary
to build–in the expected behavior into MAS rather than allowing it to emerge
in a less policed way. This build–in requires a representation of the emergent
behaviors inside the individual agents. In accordance to statistical physics mod-
eling, we found that mesoscopic descriptions can fill this gap. It remains an open
question which of the two approaches is more promising at the end.

For microscopic models exhibiting emergent behavior, we suggest a method,
how to construct a mesoscopic model exhibiting equivalent macroscopic behav-
ior. Relevant variables which are able to describe the emergent structures can be
introduced into the original model. Then an averaging process can be assumed
and mesoscopic states can be identified.

Such a model is still not a macroscopic model since it contains short–time
fluctuations which in a macroscopic description have to be averaged out by self–
organizing agent behavior. These interrelationships are described in figure 1.

The construction of the mesoscopic model provides the appropriate descrip-
tion level to allow the programmer to implement in a straight–forward way the
rules and conditions for the deliberative agents to exhibit the emergent behavior
by self–organization.

Fig. 1. The relation between micro–, meso– and macroscopic models
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3 From Microscopic to Mesoscopic Modeling – A Case
Study with Minority Games

The El Farol Bar Problem (EFBP) [27] is a famous setting to examine the im-
pact and implications of inductive reasoning for populations of agents. Complex
Systems Research has shown that deductive reasoning breaks down under com-
plication, forcing agents to use inductive reasoning. Agents can get overwhelmed
because (1) their rationality is bounded or (2) they need to make assumptions
about the future behaviors of opponents, who do not behave rational [27]. This
forces agents to use inductive reasoning.

The EFBP is named according to a bar in Santa Fe, which is only enjoyable,
if it is not crowded – defined by a certain threshold. Agents are regularly forced
to decide, either to go there or to stay home. In order to do so, they have to
anticipate the current amount of customers. Their only source of information is
the history of attendings from past evenings.

A socio–economically inspired, exact formulation of this setting is given in
the so–called Minority Game(MG) [24],[28]. An odd number of N players have
to make repeatedly binary decisions (e.g. yes or no, 1 or 0). In an economic
interpretation, the players can be regarded as consumers deciding to buy from
two suppliers. Only agents in the minority group are considered to be winners,
they get rewarded by a score increment. With a memory size of m there are 2m

possible histories and 22m

possible strategies to predict the next choice of the ma-
jority. From an economical view–point the global systems behavior is optimized
if both suppliers are chosen with approximately equal frequencies. Such globally
optimal behavior can be obtained by synchronization to constant groups of win-
ners (N−1

2 ) and losers (N+1
2 ). However to allow maximum individual profit, the

groups should be mixed by fluctuating agents.
Several modifications of the game were introduced. These range from evolu-

tionary approaches [29],[30] to stochastic simplifications [31]. Despite exhaustive
theoretical investigations on the dynamic behavior and possible optimizations
of populations (see [32] for an overview), there are still open questions concern-
ing the simultaneous optimization of possibly deliberative behaviors [33]. We
will return to these later. In the following sections, we will consider an adaptive
stochastic version of the MG, which contains additional time evolving probabil-
ities. In the spirit of models recently discussed [34],[35], our model displays a
dynamical evolution of decision behavior of agents. Specific behaviors emerge, i.
e. alternating or supplier loyal behavior, as the system evolves in time.

3.1 Stochastic Minority Game

Here, we summarize definition and results of an adaptive stochastic MG with
dynamicly changing strategies we have introduced recently [36]. The game is
round-based and consists of an odd number of N agents and two suppliers.
Figure 2 summarizes the selection process inside individual agents. In order to
choose one of the suppliers – 0 or 1 – at each time step, each agent i keeps
a probability pi(t) ∈ (0, 1) to change the supplier, i.e. it stays with the same
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Fig. 2. Selection process inside stochastic agents

supplier as in the former step with probability 1 − pi(t). The result of his choice
is denoted by si(t) ∈ {0, 1}. The supplier chosen by the minority of the agents in
time step t makes them winners, the majority having chosen the other supplier
loose. At the beginning, suppliers si(0) are selected randomly and the pi are
chosen uniformly over the interval [0, 1], in our present study. The dynamical
evolution consists in the change of the agents probability pi(t) after each round.
After winning, the probability is multiplied by λ+ > 0 whereas after loosing it
is multiplied by λ− > 0 thereby limiting the maximum of the probability to
1.0 in cases of λ+, λ− > 1. Depending on λ+, λ− the probability to change the
supplier is increased or decreased after winning or loosing, resp. Different regimes
of emergent behavior are summarized and discussed in the following subsection.

3.2 Emergent Behavior

The continuous range of probabilities pi ∈ [0, 1] defines an infinite set of agent
states. Time evolution of the game play will change the initially uniformly dis-
tributed population of agents, depending on the values of λ+, λ−. The emerging
behavior consists of either balancing the agents at mixed strategy or leads to
the extreme cases of supplier–loyal agents pi → 0 or deterministic alternating
agents pi = 1.0. defined by ranges of λ+, λ−.

Supplier–loyal behavior occurs in particular for λ+, λ− < 1. After initial mix-
ing, successive freezing of the agents into supplier–loyal behavior is observed
and almost no agent changes side any more, since the pi(t) become exponen-
tially small. Even if almost half of the agents cannot optimize there individual
bahavior in this regime, almost optimal global behavior is still possible depend-
ing on parameters and initial conditions.
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A similar time–evolution is observed also in the deterministic–alternation
freezing regime λ+, λ− > 1. The difference is that, after the initial mixing stage,
the freezing happens according to the fact that all pi = 1.0, and all agents as
well as the minority–supplier deterministically alternate.

Interestingly, optimization of global and individually fair behavior (almost
equal sides, every agent wins almost half of the time steps) is obtained by mixing
in the working regime λ+ > 1, λ− < 1, where winners increase their probability
to change the supplier in contrast to losers, who increase the tendency to stay,
as long as λ− is not too small.

This emergent behavior cannot be derived directly from macroscopic Rate
Equation obtained from the Master Equation by a simple mean–field assump-
tion [18]. Instead, more sophisticated methods of statistical physics are needed.
This is not our interest in the present paper.

Here, we focus on the question how emergent behavior can be used to construct
a less microscopic model which exhibits equivalent macroscopic behavior but in
a more controlled way, as explained in section 2.2.

3.3 Mesoscopic Model

So far, an adaptive stochastic MG with dynamically changing strategies has been
reported with emergent behavior optimizing global performance as well as indi-
vidual profit. A model exhibiting equivalent macroscopic behavior by building–in
the expected behavior will implement states which directly represent the emer-
gent structures thereby accounting for correlation effects, which are needed to
allow for the self–organizing structures wanted. These three strategy states are
assumed as representative of the agent behavior in the observed emergent struc-
ture, loyal, alternating or undetermined, cf. figure 3.

For the transitions between the states, a deliberative mechanism is introduced.
In each state, the agent counts its number of wins and loses. As soon as these
counters exceed certain thresholds, a transition into a neighboring state is done.
Thus, transitions rates will depend on the individual agents history. In this
model, the correlations between the three deliberative states and the supplier
choice have to be kept and we end up with a six–state mesoscopic model. These

Fig. 3. The mesoscopic state strategies: Loyal consumers (1L,0L) continue choosing
their last supplier, alternating consumers (1A,0A) change definitely each time–step,
whereas undetermined consumers (1U ,0U) change their supplier with probability p
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Fig. 4. The mesoscopic states and transitions between them. The transitions rates are
time dependent according to our rule described in the text.

hidden states are not directly observable from the macroscopic behavior, which
is described by the choice of the supplier solely. The evolving history of the
winning supplier side will determine the time dependence of the transition rates
shown in figure 4. The time evolution of the occupation numbers of the six states
obeys

N0L(t + 1) = (1 − λL(t))N0L(t) + μL(t)N0U (t)
N1L(t + 1) = (1 − λL(t))N1L(t) + μL(t)N1U (t)
N0U (t + 1) = λL(t)N0L(t) + [(1 − λA(t))(1 − p) − μL(t)]N0U (t)

+(1 − λA(t))pN1U (t) + μA(t)N1A(t)
N1U (t + 1) = λL(t)N1L(t) + (1 − λA(t))pN0U (t)

+ [(1 − λA(t))(1 − p) − μL(t)] N1U (t) + μA(t)N0A(t)
N0A(t + 1) = λA(t)(1 − p)N0U (t) + λL(t)pN1U (t) + (1 − μA(t))N1A(t)
N1A(t + 1) = λA(t)pN0U (t) + λL(t)(1 − p)N1U (t) + (1 − μA(t))N0A(t)

These are time–discrete equations involving the time–dependent deterministic
transition rates λ’s and μ’s. These depend on the internal counters and thereby
on the winner side, which is self–consistently determined from

N1 − N0 =
∑

j∈{L,U,A}
(N1j − N0j) .

The derivation of macroscopic time–continuous Rate Equations for the relevant
slow variables by elimination of fast fluctuations has not been obtained so far.

This six–state mesoscopic model is not a microscopic model any more, since
the multiple microscopic agent behaviors of the adaptive stochastic MG with dy-
namically evolving strategies have been averaged out and replaced be a few de-
liberative states representing the emergent structures of the microscopic model.
On the other hand, it is not a macroscopic model since it is still a a time–discrete
MG which has to find its optimum performance by self–organizing agents. These
interrelationships are described in figure 1.
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3.4 Deliberative Implementation

In the mesoscopic MG described above, the agents observable behavior can be
regarded as mental attitudes. In [37] a similar semantic interpretation of agent
behaviors, called personalities, in a MG like setting are given. The mesoscopic
model proposes the available attitudes. The states N0L and N1L denote agents
that are loyal to a past selection and stick to it. Opposed by the changeable
agents in N0A and N1A, who alternate their former selection continuously. Fi-
nally, in N0U and N1U we find undecided agents, changing their selection with a
given probability p. The observation that the mesoscopic states relate to mental
attitudes leads to their implementation in a deliberative agent architecture.

A successful architecture to develop deliberative agents is the BDI model.
Bratman [38] developed a theory of human practical reasoning, which describes
rational behavior by the notions Belief, Desire and Intention. Implementations
of this model introduced the concrete concepts of goals and plans, leading to a
formal theory and an executable model [39],[40].

Beliefs represent the local information of agents about both the environment
and its internal state. The structure of the beliefs defines a domain dependent
abstraction of the actual environment. It can be regarded as the view–point of
an agent toward its surrounding. The goals represent agent desires, commonly
expressed by certain target states inside the beliefs. This general concept al-
lows to implement both reactive and pro–active behavior. Reactive mechanisms
are modeled by goals or plans which are triggered by the occurrence of certain
events, while pro-active behavior is implemented by goals which are not directly
triggered. Agents carry out these goals on their own (see [41] for a discussion of
goals in BDI systems). Finally, plans are the executable means by which agents
achieve their goals. In order to reach target states, agents deliberate which plans
to execute. This is also known as reactive planing, because the precompiled plans
are developed at design time. Single plans are not just a sequence of basic actions,
but may also dispatch sub-goals.

The Jadex research project1 [42],[43], provides the BDI–concepts on top of
the well known JADE2 Agent Platform [44]. A suite of tools facilitate the de-
velopment, deployment and debugging of Jadex–based MAS. The single agents
consist of two parts. First, they are described by the so–called Agent Descrip-
tion Files (ADF), which denote the structures of beliefs and goals together with
other implementation dependent details in XML syntax. Secondly, the activities
agents can perform are coded in plans, these are ordinary Java-classes. The goals
and plans of the single agents can be described as a tree. Some AOSE and Re-
quirements Engineering (RE) methodologies use corresponding trees to model
behavior (see [45] for an overview). The nodes are goals and plans, which both
can dispatch subgoals. The leafs of these trees are anyway plans, since they are
the only means to perform activities. Figure 5 gives an overview of the goal hi-
erarchy of individual agents in the mesoscopic adaptive MG. Rectangles denote
the plans available to the agent, ovals the goals which are used in the delibera-
1 http://vsis-ww.informatik.uni-hamburg.de/projects/jadex
2 http://jade.tilab.com/
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Fig. 5. Goal/Plan hierarchy of the BDI implementation

tive process to determine which plan to execute. The call (msg:request bid) for
the next round (i + 1) is processed by a plan in each single agent (AgentPlan).
Upon arrival a new goal (Select Strategy) is instantiated, which is achieved by
a dedicated plan (ConsiderationPlan). This plan has access to the local belief-
base to determine the history, the current state and the values of λ, μ and p.
Upon these data, the next state is selected and executed by dispatching a sub-
goal. The three available subgoals correspond to the three pairs of mesoscopic
states described above. The associated plans access the beliefbase to determine
the selection in round i and update the beliefbase to indicate the selection for
the current round i + 1. Agents get informed about the result of each round by
reception of a message (msg:round result). A Plan (RatePlan) is responsible to
process this message and to update of the local beliefs.

3.5 Comparison and Results

Our mesoscopic deliberative MG can balance agents at mixed strategy (mixing
regime) or can lead to the extreme cases of supplier–loyal strategy or determin-
istic alternating strategy (freezing regimes), as the stochastic MG does. These
behaviors are observed in different regimes defined by ranges of the parameters
λ’s, μ’s and p of the six–states. This mesoscopic deliberative MG is found to
exhibit equivalent macroscopic behavior as the microscopic adaptive stochastic
MG with infinitely many states. This is shown in more detail in the rest of this
section.

Both freezing regimes are found in a large range of parameter values in both
the mesoscopic and the microscopic model. Also in these regimes, globally opti-
mal behavior accompanied by segregation of the agent population is found. In
the mixing regime global optimization is observed at fair individual behavior
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Fig. 6. The squared global loss is plotted as a function of the properly scaled number
of agents. Using an information–theoretic inspired scaling with ln λ− in the microscopic
MG and with ln f

f+s
in the mesoscopic MG, a data collaps is obtained with a crossover

from the optimum solution at λ− → 1 or f → ∞, resp., to the O(N) behavior. Data
of the microscopic MAS are taken from [36]. Further explantation see text.

in the following sense. Both suppliers are chosen by an almost equal number of
agents, while every agent wins almost half of the time steps, the best individ-
ual solution without segregation. It is obtained in the region with λj > μj for
j = L,A in the mesoscopic model. and in part of the region λ+ > 1, λ− < 1 in
the microscopic model. Also, metastability is observed as in our stochastic MG.
Further details of the adaptive stochastic MG see [36].

The dynamic behavior of the MAS can be understood from the individual
agents behavior. We have analyzed the mixing regimes in greater detail. Here,
the agents prefer the two opposite groups in the alternating state. According to
the deterministic transition rules, each agent returns to the undetermined state
after a while, thus getting the chance to return to the winners side if it was
on the losers side during its last alternating state. So, all agents rotate through
winner and loser side thereby optimizing the global system behavior. This self–
organizing macroscopic behavior is intended by the mesoscopic construction in
contrast to the emergent behavior of the stochastic MG.

In figure 6 we compare results for our mesoscopic MG in the mixing regime with
parameters λL = 1, λA = 1/s if the agent won, μL = 1/10, μA = 1/f if the
agent lost and p = 0.95 with those or our stochastic MG in its mixing regime,
i.e. the part of the region λ+ > 1, λ− < 1 with 1 − λ− << λ+ − 1. Equivalent
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behavior occurs over a hole range of parameters. The average loss of the system, i.e.
the deviation from global optimum, is plotted as a function of the properly scaled
number of agents. The scaling brings all simulated data of the chosen parameter
range onto one curve describedby a theoretical fit, which shows a crossover between
the theoretic optimum and an O(N) behavior. The data collapse is obtained by
an information–theoretic inspired scaling with lnλ− in the microscopic MG and
with ln f

f+s in the mesoscopic MG for the parameters examined here. This means
that our MGs generate globally optimal as well as individually fair behavior in the
mixing regimes at arbitrarily large agent numbers N in the limits λ− → 1 or f →
∞, respectively. Instead of the limit f → ∞, other limits in parameter space can
used for optimal behavior, e.g. μL → 0 in conjunction with p → 1 is expected to
work as well.

Further insight into the system behavior is expected from a study of the
mesoscopic equations in section 3.3.

4 Conclusions

In this paper, we have shown how mesoscopic modeling, inspired by its usage in
statistical physics [26], can be used to analyse and quantify MAS exhibiting emer-
gent behaviors. In addition to the mathematical description of system behavior,
the identified mesoscopic states lead to a deliberative implementation of agents,
showing equivalent system behavior. Our model gives theoretical foundations for
simulations using mentalistic abstractions in large scale simulations, e.g. [37].

The presented constructive approach deduces a number of mesoscopic agent
states from observed emergent MAS behavior. By means of self–organization
these states lead to similar behavior in a controlled and predictive way. The
identified states directly reflect macropscopic emergent phenomena. Therefore
we expect the number of mesoscopic states to scale proportional to the later.
This will be a topic of further research.

Economic development efforts require developers to deliberate about the agent
architecture to be employed under certain circumstances. Even when simple re-
active or stochastic agents are used, development teams have a macroscopic
behavior in mind when designing MAS agents. Therefore it would be valuable
to examine if methodical ways are possible to derive microscopic states from de-
liberative mesoscopic models. Large numbers of agents would average out fluc-
tuations, allowing developers to revise previously defined models of the desired
agent behavior to a microscopic implementation of fairly simple agents.

The presented approach to the development of similar behavior does not only
contribute to research of universality in MAS [10], but has also impact on MAS
design. It allows to construct equivalent emergent phenomena in MAS. Fur-
thermore, we expect that the deliberative model allows optimization of fitness–
functions for individuals with coexistent optimized global system behavior. The
simultaneous optimization of possibly deliberative behaviors is still an open ques-
tion in the case of the MG [33]. How these abstractions can be used to engineer
reliable self–organized MAS and limitations of this approach are topics of further
investigation.
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Abstract. Social insects perform complex tasks without top-down style
control, by sensing and depositing chemical markers called “pheromone”.
We have examined applications of this pheromone paradigm towards in-
telligent transportation systems (ITS). Many of the current traffic man-
agement approaches require central processing with the usual risk for
overload, bottlenecks and delays. Our work points towards a more de-
centralized approach that may overcome those risks. In this paper, a car
is regarded as a social insect that deposits (electronic) pheromone on the
road network. The pheromone represents density of traffic. We propose
a method to predict traffic congestion of the immediate future through
a pheromone mechanism without resorting to the use of a traffic control
center. We evaluate our method using a simulation based on real-world
traffic data and the results indicate applicability to prediction of imme-
diate future traffic congestion. Furthermore, we describe the relationship
between pheromone parameters and accuracy of prediction.

1 Introduction

Many social insect species such as ants, bees, and wasp coordinate the activities
of individuals in the colony without direct communication or complex reason-
ing. Instead, they deposit and sense chemical markers called “pheromone” in a
shared physical environment (pheromone potential field) that participates ac-
tively in the system’s dynamics. Here, we focus on the propagation model of
the pheromone potential field. We will examine applications of this pheromone
paradigm towards intelligent transportation systems (ITS).

ITS have spread widely recently. Beyond car navigation systems and traffic
information systems[1], various types of sensors and communication devices are
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being introduced for various kinds of application. Solving traffic congestion is a
serious problem among such applications.

One of the key technologies to solve this problem is traffic prediction. There
are traffic information systems which are actually used, such as VICS (Vehicle
Information and Communication System) [2] which started in Japan in 1996.
Drivers can easily grasp the current surrounding traffic situations through VICS.
However, the problem of VICS is that traffic information may be delayed due to
communication between the road and data center or due to processing time at
the data center. This leads to driver often receiving traffic congestion data that
are different from the actual traffic.

Another problem is that drivers receive current traffic information only when
they search for the shortest route to their destination. That current traffic data
will become useless after a while on the route. Traffic prediction can solve this
problem by predicting appropriate data for each stage of traffic data on the
route. Traffic prediction techniques are widely studied in many institutions [3]
and are already introduced in commercial car navigation systems [4]. Some of
such techniques deal with long-term predictions such as predictions spanning
1 hour to 1 day based on statistical analysis of past data. However, long-term
predictions cannot be applied to driving in a small area and cannot predict the
innately sharp fluctuation of traffic. Short-term prediction is suitable to driving
in a small area and to make predictions accurate.

Short-term prediction methods have also been studied [5],[6]. However most of
the studies use statistical data of the past. As such, it does not work sufficiently
with sharp or irregular fluctuation of traffic.

We propose a short-term traffic prediction using the pheromone model which
has a relatively simple mechanism that doesn’t require statistical data. In our
method, a car is regarded as an agent or an ant. Each car would deposit some
pheromone into a virtual space with its amount based on the congestion level.
And the total pheromone amount at each location will be used to predict the
traffic in the immediate future.

We experimented with the pheromone prediction method based on real traffic
data to evaluate our method. The results indicate its applicability to prediction
of traffic congestion in the immediate future. Furthermore we investigated the
relationship between pheromone parameters and prediction accuracy.

2 Pheromone

2.1 Basic Mechanisms

The term “Pheromone” (Greek for “carrier of excitement”) was named by P.
Karlson and M. Luscher in 1950s [7]. Pheromone is defined as communication
chemical that possesses certain meanings that are understood between individ-
uals of the same species. Pheromones have various kinds of functions. For ex-
ample, ants use trail pheromones to guide other ants to food, and bees use alert
pheromones to inform of disturbance to other bees.
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Fig. 1. Action pattern of ants which used trail pheromone. Quoted from document[9].

The trail pheromone mechanism has already been applied to certain areas
to efficiently solve problems such as the Traveling Salesman Problem [8]. The
mechanism works as follows: Ants find food and transport it to their nest de-
positing trails of pheromone on their returning path. The pheromone diffuses
into the surrounding environment and its intensity weakens over time. However,
the density of pheromone left on the path where ants have passed most fre-
quently becomes condensed. Eventually, pheromone on the shortest path to the
food becomes most dense (see Figure 1).

On the other hand, bees use alarm pheromone. A leading bee would inform
of any danger using alarm pheromone and other bees that follow would avoid
the alarm pheromone. This simple mechanism also has been applied to some
technologies [10].

2.2 Characteristics

Pheromone is a simple chemical media for delivering information. Although each
individual ant or bee possesses just a simple and local behavior rule, they are
capable of enabling complex functions. This is largely related with the charac-
teristics of “evaporation” and “propagation” [11]. “Evaporation” represents old
information disappearing as time passes due to the volatile characteristics of
pheromone. This characteristic enables other ants to receive the most recent in-
formation. “Propagation” represents the characteristics of pheromone spreading
out towards the surrounding environment. This allows other ants in different
places to receive this information.

3 Model for Traffic

This paper discusses the use of this dynamism to predict traffic. The model
used here will regard cars as ants or bees and will deposit pheromone on the
pheromone potential field. Cars equipped with speed sensors would deposit some
amount of pheromone in proportion to their speed. Other cars that follow their
route would avoid traffic congestion by checking the intensity of pheromone.
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3.1 Brueckner’s Model

We propose a traffic prediction pheromone model based on the pheromone tran-
sition model proposed by S. Brueckner [12]. He defined pheromone as having the
following characteristics:

1. Pheromone is information deposited by agents when an event occurs.
2. Deposited pheromone is aggregated in place and represents the information

potential of each location.
3. Pheromone evaporates over time thus decreasing its value.
4. Pheromone propagates towards the surrounding environment.
5. And each agent is affected by pheromone.

According to this definition, we defined traffic prediction pheromone as
follows.

1. Pheromone is information deposited by cars based on the surrounding traffic
situation.

2. Deposited pheromone is aggregated on the road and represents the traffic
situation of each location.

3. Pheromone evaporates over time. This corresponds with traffic moving to-
wards another location over time.

4. Pheromone is propagated towards nearby roads. This corresponds with traffic
movement along flow.

5. And each driver is affected by the traffic prediction based on pheromone.

3.2 Transition Functions

Brueckner’s Model is a kind of Coupled Map Lattice (CML) [13] or continuous
cellular automaton. This section defines detail transition functions of aggrega-
tion, evaporation and propagation.

Aggregation. Each car is equipped with a speed sensor and a communication
device and deposits (aggregates in place) pheromone according to congestion
rate. Generally, speed is used to represent congestion rate, so car agent will
deposit some amount of pheromone according to its speed.

Let aggregation of pheromone be r(t, p) in time t and a location p. Value v(t, p)
is the speed of a car in time t and place p and α is the aggregation parameter.
This function is represented as follows.

r(t, p) =
α

v(t, p)
(1)

Equation (1) has meanings as follows.

– The deposit increases with decreasing speed (Figure 2 (a)).
– The deposit decreases with increasing speed (Figure 2 (b)).
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Fig. 2. The image of a car agent deposits pheromone

This model assumes existence of information servers at each location. Cars
would send certain amounts of pheromone uplink to be aggregated at the infor-
mation server. Information servers referred in this paper would be prepared for
each road link1 .

Evaporation. Aggregated pheromone decreases over time due to evaporation.
Let the amount of pheromone be s(t, p) in time t and place p. The predicted
amount of pheromone s(t + 1, p) is represented as equation as follows.

s(t + 1, p) = E × s(t, p) + r(t, p) + q(t, p) (2)

Value E (E ∈ (0, 1)) is the evaporation parameter. q(t, p) is the amount
propagated from the neighboring servers as shown in the next section.

Propagation. Propagation of pheromone to neighbors is realized by communi-
cation among information servers. Transition function of the propagated amount
q(t, p) is shown as follows.

q(t + 1, p) =
∑

p′∈N(p)

F

|N(p)| (r(t, p
′) + q(t, p′)) (3)

N(p) represents the upper stream neighbors of location p that affect the next
status of location p. F is the propagation rate that is a function of the pheromone
value of the upper stream in our model. In traffic flows in the road network, the
movement of cars is only goes straight or turns. Thus, the propagation rate
function from a neighboring location p′ to a location p is described as follows
using propagation parameters α and β.

F = f(p, p′) =

⎧⎪⎪⎨
⎪⎪⎩

β when p and p’ are on straight line
β

s(t,p)(s(t, p) > c)
γ when p and p’ aren’t on straight line
γ

s(t,p)(s(t, p) > c)

(4)

1 Judging from the situation that ITS spread, the assumption that a network of infor-
mation servers would exist will become realistic. For example, for intellectual control
of a signal, an idea to install a simple information server every each intersection is
suggested[14]. On the other hand, technology to make cars servers temporarily is
studied[15], [16] .



Pheromone Model: Application to Traffic Congestion Prediction 187

Fig. 3. Pheromone propagation

And we defined a congestion threshold c. When traffic congestion occurs down
stream from p , propagation rate is an inverse proposition to the pheromone
amount in p .

4 Evaluation

We conducted a simulation of our model using actual traffic benchmark data.
Then we evaluated how accurate our model predicts traffic based on error in-
dices. This chapter describes the data used in the simulation, assumptions of the
simulation, and simulator specification.

4.1 Data

The data we chose has high time granularity and a relatively sharp fluctuation
in traffic. The real data used in the simulation is ”Kichijoji-Mitaka benchmark
dataset” provided by i-Transport Lab. Co., Ltd. to the general public [17]. This
dataset consists of road link information, complete trail data of approximately
12,000 cars in an area between Kichijoji and Mitaka station for about 2 hours
on a certain day in 1996 (See Figure 4). These data was collected by human
observers at about 100 observation points in the area. Each trail data includes
license plate data and time data to the minute, representing the time when a
car passed an observation points.

4.2 Assumptions for the Simulation

The simulation has been performed under the following assumptions.

– All cars are equipped with speed sensors and communication devices.
– Each lane of a bi-directional (ordinary) road has an information server of its

own.
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Fig. 4. Map of the area where actual survey data were observed

Fig. 5. A communication range of a car and relation of prediction time

– Cars send their speed information uplink to information servers correspond-
ing to road links.

– Information servers are installed for every road link on the map and maintain
local pheromone dynamics.

– Information servers can communicate with neighboring information servers.

Note that, as the pheromone value, we use link travel time (the time it takes
for a car to travel a road link) which is calculated from the average speed of a
car along the link distance rather than the speed of a car itself.

Average link travel time is around 1 minute since the average link length on
the map is around 1 km and the speed of the fastest car is around 60 km/h.
Therefore it would take 1 minute for a car to reach the next link after a prediction
has been provided from a preceding car. Thus, in the simulation, transition time
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step is set to 1 minute and the pheromone model predicts 1 minute into the
future (See Figure 5).

4.3 Simulator

Our simulator is designed to evaluate the pheromone model and some other
baseline model. And it calculates the error rate of these models. It also has visu-
alization features to read actual traffic and predicted traffic through animation
(See Figure 6).

Fig. 6. Screenshot of simulator

5 Result of Experiments

Evaluation has been performed from the standpoint of prediction accuracy, rela-
tionship between parameters and accuracy, and effect on the search of shortest
route to destination.

5.1 Experiment 1: Prediction Accuracy

Prediction accuracy is calculated as error rates between the predicted link travel
time sequence and the actual link travel time sequence. Actual link travel time
is a simple average of all passed cars within a single transition time step.

Predicted link travel time is a scaled pheromone amount based on a scaling
parameter and length of each link. The scaling parameter is empirically set to
0.04. Let Prt(t, p) be the predicted link travel time and S be the global scaling
parameter and l(t, p) be the link length (m) in a link p and a time t.

Prt(t, p) = s(t, p) × S × l(t, p) (5)

The error rate indices we used are correlation coefficient and RMS (Root Mean
Squared) error.
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The prediction results are compared with two types of baseline predictions.
One is a prediction based on a simple moving average time. The other is a
prediction based on a persistent prediction model which assumes that the current
situation will persist for some duration of time. For example, in a 5 minute
persistent prediction model, the average value between 8:50 and 8:55 will persist
until 9:00. The current VICS information can be received within 5 minute or more
after sensing, so we can assume that a 5 minute persistent predication model
corresponds with VICS data. The results of this experiment are also compared
with a 1 minute persistent prediction model based on the assumption that the
delay may be reduced in the future.

Result 1: Prediction Accuracy. Model parameters are empirically deter-
mined as follows: Aggregation parameter α = 2.0, evaporation parameter E =
0.8, propagation parameter for straight link β = 0.8, propagation parameter for
turning links γ = 0.1, congestion threshold c = 10.0.

For example, Figure 7 shows fluctuation of actual traffic and traffic predictions
in the 2 hours between 7:50 and 10:00 at link A of Figure 4. Actual traffic is
the average link travel time [seconds] of all cars that passed the link at the time
the actual data was collected. Predicted link travel times [seconds] of 4 types of
prediction methods are also drawn in the same graph.

Fig. 7. Actual travel time, pheromone and persistent prediction in section A

Table 1. Accuracy of pheromone and persistent prediction(Section A)

Correlation coefficient RMS error[sec]

Pheromone 0.69 31.5
1 minute persistent 0.48 35.2
5 minute persistent 0.36 45.3
moving average 0.26 41.0
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Table 2. Average accuracy of pheromone and persistent prediction

Ave. Correlation coefficient Ave. RMS error[sec]

Pheromone 0.59 45.6
1 minute persistent 0.41 56.5
5 minute persistent 0.41 46.6
moving average 0.30 49.2

The correlation coefficient and RMS error are shown in Table 1. These re-
sult shows that our method outperforms baseline predictions. We can say that
baseline predictions become worse when traffic fluctuation becomes very sharp.

Additionally, overall result of all links on the map (Westside of Kichijoji street)
as Table 2 shows that pheromone prediction has higher accuracy than the other
methods.

5.2 Experiment 2: Relationship Between Parameters and Prediction
Accuracy

Next we study the effect of different patterns of parameters. First, we assumed
the following assumption regarding the aggregation parameter and evaluated the
relationship.

Existence of commercial vehicles such as buses or taxis would slow
down the traffic since such vehicles stop abruptly or are hardly overtaken.

Based on this assumption, separate values for the aggregation parameter α were
employed for commercial vehicles and other vehicles. The effect of the ratio of
these aggregation parameters towards prediction accuracy is evaluated in this
experiment.

Furthermore, relationship between the evaporation parameter and prediction
accuracy is evaluated.

Result 2: Relationship between Parameters and Prediction Accuracy.
Results of the sensitivity analysis of aggregation parameter are shown in
Figure 8. The X axis represents G : C ratio where G is the aggregation pa-
rameter of a general car and C is parameter of a commercial vehicle. The Y
axis represents the number of links that have highest correlation coefficient
with the parameter ratio. Assigning the same aggregation parameter values
for the general and commercial vehicles marked the highest accuracy in most
of the links. Furthermore, we confirmed that in such links, the G : C ratio
scarcely affected the accuracy. However, in some links, accuracy increased when
the aggregation parameter value for commercial vehicles was increased. In such
links, a ratio of 1:2 to 1:7 produced the best results. The number of buses or
taxis in these links was higher than other links. Therefore the assumption that
commercial cars would affect the traffic and slow it down was proved by this
experiment.
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Fig. 8. Sensitivity of aggregation parameters varied in general cars and commercial
cars

Fig. 9. Sensitivity of evaporation parameter

This result implies that car agents should vary its pheromone emission ac-
cording to its type of usage (commercial or general). Such type information of
vehicles can be easily provided if a car is equipped with a simple communication
device and sends the information uplink. If such communication device is not
available in a car, some types of car detector (such as video-based detector) can
be used to detect the type of usage of a car.

Results of the sensitivity analysis of evaporation parameter are shown in
Figure 9. The X axis represents the evaporation parameter setting and the Y axis
represents the number of links which mark the highest correlation coefficient
with the parameter. The optimal evaporation parameter is around 0.7. Further-
more, the parameter is not affected by the ratio of commercial vehicles.

5.3 Experiment 3: Improvement of Shortest Route Search

Finally we apply the prediction results to the shortest route search. The shortest
route search can be improved by traffic prediction since actual travel time is
affected by the situation of traffic. We compared the results of the shortest route
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Table 3. The shortest time route selection rate(from S1 to S2)

number percentage[%]

Pheromone 63 54.3
1 minute persistent 42 36.2

Table 4. The shortest time route selection rate(from S2 to S1)

number percentage[%]

Pheromone 61 52.6
1 minute persistent 44 37.9

search with the prediction based on our method and the prediction based on the
baseline prediction. A number of selection of the right shortest route by each
search is used as indices.

In this experiment, the shortest route search is performed with one set of ori-
gin and destination designated as S1 and S2 in Figure 4. Searches for both direc-
tions were performed at each minute beginning from 7:53 until 9:48 (116 times).
We adopted Dijkstra’s shortest path algorithm to find the overall optimal solution.
Dijkstra’s algorithm is also generally used in commercial car navigation systems.

Note that this congestion-aware search is updated incrementally. A running
car updates its estimated shortest route for each transition time step since pre-
dictions would change as the car runs.

Result 3: Improvement of Shortest Route Search. Table 3 and Table 4
show the results of the shortest route search with each prediction method. For
both directions of the origin-destination set, the pheromone prediction method
was better than the persistent prediction method. The absolute accuracy per-
centage of selection of shortest route was around 50%. The low overall accuracy
is considered to be caused by the very sharp fluctuation of traffic in this area.
The area used in this experiment is small and it does not have much variation
in the selection of routes so we may have to experiment on larger maps.

6 Related Works

Application of the pheromone mechanism has been studied in the so-called
swarm intelligence research field. On the other hand, traffic congestion prediction
has various kinds of solutions such as the statistical method and simulation-based
method. Such related works are discussed in the following sections.

6.1 Application of the Pheromone Mechanism

There are various studies concerning application of the pheromone mechanism.
This paper regards mobile agents that deposit pheromone as cars, which is sim-
ilar to the approaches used in actual agents for sensors or planes.
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One example of an application is the unmanned plane in a war field [10][9]
The unmanned plane would launch mobile agents which would deposit alarm
pheromone when they encounter enemy missile sites. The plane would analyze
the pheromone potential field and then decide upon a route to its destination.

Another example of an application is mobile sensor network.[18] The study
of this application concerns methods to improve the efficiency of the overall
monitoring task by making mobile sensors deposit alarm pheromone to indicate
that it has observed a certain area and that other mobile sensors can avoid
observing the same place again.

These researches use alarm (negative) pheromone while most of the researches
regarding swarm intelligence use trail (positive) pheromone. These researches
also deal with the flexible nature of pheromone appropriately. However, note that
the researches are evaluated using virtual data and not actual data. Our study
has performed evaluations using real traffic data to confirm the applicability to
traffic prediction.

6.2 Traffic Congestion Prediction

There are two types of methods of short-term traffic congestion prediction in the
field of traffic engineering research. One is based on a statistics of past traffic
fluctuation patterns. The other is based on traffic simulation.

Statistical prediction is performed by matching current traffic patterns (time se-
ries data) to typical traffic patterns in the past. The most applicable pattern within
the past traffic patterns is used for future prediction. Time span may vary from
minutes to days depending on its application. The algorithms used in the match-
ing process for short-term prediction are neural network [5] or Bayesian Network
[6] and so on. The cost incurred for processing is significant since large amounts
of history data of past traffic is used. Furthermore, prediction of irregular traffic
patterns can not be achieved using only this pattern-matching based method.

On the other hand, traffic simulation is used for short-term traffic prediction
[19]. The simulation model that describes the mutual interference of cars con-
sists of running car dynamics, road type, congestion model and driver model.
Thus, the simulation tends to be complicated and time consuming. Distributive
methods of simulation such as cellular automaton (CA) are also introduced into
this traffic prediction [20]. While prediction using CA has proved to be effective
when information regarding incoming stream volume is available, it does not
seem to be sufficient when the information is partially not available, such as
when targeting normal road data.

Naturally, since these predictions are done based on information from a traffic
information center, data will have low granularity (only three levels: ”normal,”
”congestion,” and ”stacked”). Recently, probe car data is used as complementary
data to the data from the information center.[21] Real-time data sent from the
probe car is used to improve the accuracy of the prediction.

The traffic prediction method using pheromone which we have introduced
does not require past traffic data and much processing cost, and it works with a
relatively simple mechanism.
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7 Conclusion and Future Works

This paper has proposed a traffic prediction method that employs the pheromone
mechanism. Cars are regarded as agents that deposit pheromone towards places.
The pheromone would then evaporate and propagate according to a modified
version of the state transition model by Brueckner. A car would be able to
predict traffic on the road ahead from the information provided by preceding
cars. According to the results of the experiments that used real traffic data, we
confirmed the applicability of our method towards short-term traffic prediction.
Furthermore, we also confirmed optimal parameter settings through sensitivity
analysis. Future studies would include revealing the relationship between other
parameters and accuracy. Relationship between the optimal parameter and real
data is also important in order to apply this method to the real world. Appli-
cation towards congestion-aware shortest route selection might be improved by
introducing of negotiation algorithms since if all cars use the same algorithm, the
optimal route may become congested. Agent-based approach for shortest route
search will realize global optimization of traffic system.
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Abstract. Elderly people are a great repository of knowledge, the ma-
jority of which has never been gathered by formal means. In this paper
we introduce an application of multi-agent systems to support knowl-
edge acquisition from this rich repository knowledge which is only avail-
able from elderly and experienced people. Our system provides the
opportunity to complement different versions of the same knowledge
produced in an extensive geographical and cultural region with the main
objective of supporting Cultural Heritage. Users without much tech-
nological knowledge can search or leave information about some type
of knowledge. Then, the system behaves like a swarm of bees, in this
way the bee-like agents process the user contributions and the knowl-
edge emerges from the system. Queen-like agents, honey-bee, drones
and foragers have different roles inside the hive: looking for informa-
tion resemblances, computing information confidence, checking the ne-
cessity of knowledge validation, and updating user’s reliability. The
system’s feasibility has been tested on the specific area of ethnobotany,
which concerns the ways in which specific societies name and classify
plants.

1 Introduction

The speed at which the Internet is evolving can hide several questions related
to our culture and traditions. Efforts in computer science in general, and agent
technology in particular, are usually aimed at improving technology, so new
capabilities are added to future systems. Most of the systems rely on formal
knowledge, which is the main component of the systems. However we should be
aware that most of our current traditional knowledge can disappear in the near
future. We are not referring to formal forms of knowledge, but to the knowledge
that only elderly people know.

As the Valencian writer Bernat Capó said: ”When an elderly farmer dies it is
as if a small library has burnt down” [4]. Elderly people are a great repository
of knowledge the majority of which has never been gathered formally. Current
technology has arrived to almost everywhere: city suburbs and social centers
of any population have an access point to the net. However, the net is being
used to bring information from new knowledge producers to the general public,
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and there is no flow in the opposite direction, that is, gathering and verifying
information that people have and supplying it to the providers.

There are several examples of information gathering in specific knowledge
fields. For example, in Spain, several authors have been supported by private and
public local companies, for instance Joan Pellicer and his ”Costumari botanic”
[10]. This kind of work has been achieved by means of traditional field work,
in which most people are involved in a manual process and the results are
achieved in the long term. Our aim is to provide an alternative method to
favor the conservation of a certain kind of information (traditional, coming
from people) by means of the new technologies, and particularly, with the use
of agent technology. Moreover, by gathering traditional knowledge in an au-
tomated way our system gives the opportunity to complement different ver-
sions of the same knowledge produced in an extensive geographical and cultural
region.

In this paper we explain our multi-agent system En C Prou [1] where this
traditional knowledge acquisition is performed. Our system is based on the
paradigm of Swarm intelligence. Users without much technological knowledge
can search or leave information about some type of knowledge. Then, the sys-
tem behaves like a swarm, in such a way that bee-like agents process the user
contributions and the knowledge emerges from the system. Queen-like agents,
honey-bees, drones and foragers have different roles inside the hive: looking for
information resemblances, computing information confidence, checking the ne-
cessity to validate knowledge, and updating user’s reliability. The system’s fea-
sibility is being tested on the specific area of ethnobotany, which is concerned
with the ways in which specific societies name and classify plants [10].

This paper is organized as follows. First, we introduce our approach to bee-
like agents in section 2. Then we explain how the knowledge emerges from the
swarm in section 3. We continue by shown our current experimental results in
section 4. In section 5 we frame our system in previous works. And we end in
section 6 with several conclusions and discussion.

2 Swarm-Like Multi-agent System

Swarm Intelligence is the name of a line of research with a lot of potential in the
field of Artificial Intelligence [3, 2]. Swarm Intelligence refers to the capacity to
solve complex problems with simple interactions. Insect colonies function in the
following manner: without general supervision they undertake distributed work
where each individual is concerned with a part of the work. From the work of
all the individuals the solutions to complex problems emerge.

Most researchers have adopted the metaphor of the colony’s social behav-
ior to build artificial multi-agent systems. Thus complex behaviors are sup-
ported by simple agents, either in mass, time or scope [16]. Multi-agent systems
based on swarm intelligence are self-organized systems that require interactions
between agents (insects): direct interactions and indirect interactions. Direct in-
teractions are agent-to-agent interactions, while indirect interactions are agent-
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to-environment interactions, usually known as stigmergy [5, 2]. Two individuals
interact indirectly when one of them modifies the environment and the other
responds to the new environment at a later time.

We have taken this self-organization approach of multiagent systems to model
our traditional knowledge gathering system. This approach enables knowledge to
emerge from the information provided by a myriad of different and diverse users.
In particular, we adopt the model of swarms of bees to implement the En C
Prou system, so that each individual in the hive (working bees, drones, queens,
foragers and honey bees) is represented by an agent, while users are beekeepers
(see Figure 1).
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Fig. 1. Individual agents and their interaction in the EnCProu system

2.1 En C Prou General View

En C Prou is mainly concerned with the web interface and the hive. Users (bee-
keepers) access a web page where they can either carry out their consultations
or make contributions. The user has a menu from which he/she can choose from
among different actions: making a contribution to the subjects in the system,
entering a new concept, creating a new attribute, querying a particular subject,
validating the knowledge of the system, etc. Each action is enabled according to
the user’s reliability degree, which is represented by a numerical value in [0,1].
Depending on the chosen action, the user is guided step by step through other
web pages in order to carry out the activity selected with the mouse. So the
system has an easy interface accessible to non technological users, as elderly
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people usually is1. The contents of the web pages are dynamic and represent the
current information in the system.

For the sake of simplicity, in this paper we focus on the multi-agent system
supporting the hive. The swarm processes information provided by users in the
context of a traditional knowledge area, and keeps it in different honey combs. So
from particular user contributions (nectar), bee-like agents produce knowledge
(honey) that is kept in honey combs. At the end, users acting as beekeeper can
access this knowledge.

The system always takes it for granted that beekeepers are honest when pro-
viding the information. However, it is necessary to note, that the knowledge
contained in the system is not strictly academic, and therefore, it should be in-
terpreted with the confidence that corresponds to any type of traditional knowl-
edge. The model supposes that a user can have certain information on a subject
but that he/she has not been able to relate this information with another sub-
ject with important degrees of coincidence because, for example, the terminology
used by another user is different. Then, the system searches for similarities be-
tween the different information entered by the users in order to infer knowledge
from all the information received. Moreover, the system keeps links between sim-
ilar concepts to make cross-referencing knowledge easier. This makes accessing
the system’s knowledge easier for the user, saving time in revising information
given by other users, favoring the incorporation of information, and allowing the
final users to consult the knowledge kept in the hive quickly. This knowledge is
validated a posteriori by the expert beekeepers. This validation process is per-
formed periodically, depending on the amount of contributions provided by users
and their reliability.

It is important to note, that user’ reliability evolves according to the user-
system interaction. Users with a low reliability can become experts if the system
proves that their contributions have been useful to the swarm.

2.2 Bee-Like Agents

Agents build and maintain the honey combs, the spatiostructure regarding the
information that they collect. That is, each honey comb contains knowledge
related to a single concept in the application. For example, in the case of eth-
nobotany, each honey comb is a plant and the hive represents the complete
knowledge of the application.

There are three main kinds of bees that are implemented as agents: the queen,
workers and foragers. The queen is responsible for the brood, for keeping the
hive with enough bees to deal with the amount of information currently avail-
able in the system. Workers, as suggested by their name, carry out the work
related to converting information into knowledge. There are two main types
of workers: drones and honey bees. Drones fertilize the information, in two
ways:
1 The use of the mouse, however, is not always easy for elderly people. So in the future

we need to consider other kind of devices as eye-tracking devices, microphone and
speakers, and so on.
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1. First, they are aware of the quality and amount of information in the system,
so they influence the activity of the hive in order to validate the information.

2. Second, they look for similarities between the different honey combs, so that
the information can be cross-referenced (fertilization) and thus the knowl-
edge in the hive enriched.

The honey bees are in charge of gathering information about a single concept.
They get user information (nectar) and bring it up to the cells in the form of
honey by using previous contributions of other users.

Finally, foragers are in charge of finding nectar sources. They have two main
roles: Firstly, as bridge-foragers with the external environment, so they are aware
of the current users in the system and their most recent contributions. Secondly,
as quality-foragers, keeping information about the users’ reliability.

2.3 Coordination

Coordination of the different agents is mainly achieved by indirect communi-
cation, that is, with the use of stigmergy mechanisms. Initially, beekeepers in-
troduce information about a subject (plants) from the web page environment.
Bridge foragers are aware of the information that the users are registering and
they report such new information (nectar) on the information board of the hive.

Each worker decides its role (honey bee or drone) depending on the state
of the hive. A honey bee enters the data introduced by the beekeeper (nectar)
and converts it into knowledge (honey). To carry out this task, the honey bee
searches in the immediate references provided by the foragers. Then it computes
the confidence values of the contributions.

When the honey bee finishes its work it reports to the swarm about its per-
formance. Then, with this report honey bees related to the new knowledge wake
up. At the same time a drone finds out if there is information that needs to be
verified as a consequence of the new knowledge incorporated into the system.

The drone reports the need to check the knowledge related to a single subject
of the system together with the revision data. The drone is also the bee-like
agent responsible for providing information about the concepts that have a high
degree of coincidence (resemblance).

According to the drone’s report about the need to check the knowledge, bee-
keepers validate the system’s knowledge. External knowledge validation per-
formed by users assures, to some extend, that the knowledge obtained by the
swarm has a certain degree of quality.

A quality forager agent then revises the reliability degree of each user related
to the validated knowledge. Users involved in the contributions that have con-
verged on validated knowledge can increase his/her reliability; conversely, the
user’s reliability can also be decreased. If the reliability of a given user changes,
the honey comb status depending on his/her information should be revised by
the corresponding honey bees.

Reports and nectar are the stigma used for agent coordination. Occasionally,
direct communication is also used between the queen and other agents. For
example, when the queen creates a honey bee or drone.
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To illustrate the complete system let us apply it in an ethnobotany context.
In a given moment of time, the hive includes a honey comb related to the plant
thyme (the concept). The knowledge stored in the honey comb is that thyme is
a culinary and medical plant. The confidence of this information is 0.75 and 0.3
correspondingly. Moreover, there are some relationships with other plants (honey
combs): fennel and oregano. A registered user with a 0.3 degree of reliability
enters new information about thyme. In particular, the user says that the color
of the thyme flower is violet. Bridge foragers bring this information as a report to
the nectar repository. Then, honey bees related to thyme wake up, and convert
the information ”The color of the thyme flower is violet” to the knowledge ”The
color of the thyme flower is violet, confidence 0.3” at the honey comb. Now, a
drone looks for similar flower colors in the hive and makes a report. Honey bees
concerned with the report wake up and check the information contained in the
thyme honey comb in order to improve its knowledge, and so on. The queen bee
plays her role when the users enter information related to a new plant. Then she
is in charge of creating a new honey bee that will start a new honey comb.

2.4 Hive

The hive is the database in which all the system’s knowledge is stored. Each in-
dividual concept of knowledge is represented in a honey comb. Links between re-
lated concepts are established as well as links between the different honey combs.
Each honey comb can have a different number of attributes. An attribute corre-
sponds to a user contribution that is processed and transformed into knowledge,
and stored in a cell of the honey comb. The initial set of attributes available to
describe concepts is predefined. Each attribute can take on of the following two
values: true or false. If an attribute has a true value is positive, it means that
most of the users have confirmed the attribute. Otherwise, the attribute has a
false value, the degree of confidence on the value is measured by the knowledge
confidence on the attribute, defined in the interval [0, 1] and computed according
to the knowledge emerging method explained in the following section.

Then, honey combs are modeled according to the different contributions that
the users provide. Each honeycomb contains cells that collect the contributions
about attributes, together with the confidence of the data contained in them
(see Figure 2).

…

Hive 

Comb 

Attributes 

Link

Fig. 2. Visual representation of the system’s data base (hive)
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For the ethnobotany application the user has several attributes predefined2,
that for the sake of management are grouped in 13 classes: application, uses, use-
ful part, properties, doses, origin, fruit, predominant color, leafs, harvest, storage,
ambient, and other features. In the properties group the following attributes are
defined: Fever, liver,diuretic, anti-inflammatory, purgative, sedative, sleeping, lax-
ative, cold, halitosis, burns, cough, repellant, etc. The thyme honeycomb can be
modeled with the attributes: diuretic (yes, 0.3), cold (yes, 0.8), laxative (no, 0.7).

3 Emerging Knowledge

From the contributions made by the users the swarm acts, so we can say that the
system infers knowledge from data. This process is not a centralized and sequential
process, but the knowledge emerges as a consequence of the individual activities
carried out by the agents in the system according to the following methods:

Fig. 3. (a) A collection of data. (b) The results of processing the information with
En C Prou.

– The honey resemblance method, based on similarity measures
– The knowledge confidence method, based on certainty factors
– The degree of necessity to check information method, based on fuzzy logic
– The reliability update method, based on fuzzy logic too.

Figure 3 shows the difference between a system that gathers information and
the knowledge kept in the En C Prou system.

In the next subsections the methods deployed by each bee-like agent are ex-
plained. Namely, the honey comb resemblance, the knowledge confidence, the
degree of necessity to check information, and the reliability update methods.

3.1 Resemblance of Honeycombs

One of the most valuable functions that the system has for the user is that it
compares honeycombs. In the case of ethnobotany comparing the honeycombs es-
tablishes resemblances between different plants. These honey comb comparisons
2 More attributes can be added by users, if required.
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Table 1. Examples of resemblances between different plants, P1 and P2. In columns
corresponding to P1 and P2 the total number of attributes of each plant is shown.

P1 P2 #ccom #ctot #ceq sim1 sim2 R
6 10 4 8 3 0.75 0.5 0.63
16 20 4 28 3 0.75 0.14 0.45
1 1 1 1 1 1 1 1
4 10 4 6 3 0.75 0.67 0.71

allow the drone to build links between different honey combs, so the knowledge
from a honey comb is related to and supported by knowledge in other honey
combs.

In artificial intelligence, resemblance methods are often called similarity meth-
ods. However, it is important to note that we are not looking for identical pieces
of knowledge but for resemblances that allow the inference of knowledge to be
supported.

There are many research papers by many researchers on similarity measures
[17]. However, there is no universal guide on which method is most suitable. The
choice of method depends a lot on the application domain.

Thus, for the particular case of ethnobotany, it is very complicated to find a
single similarity criterion between plants. For one person, a plant A can be simi-
lar to a plant B because B performs a similar function, while for another person,
the resemblance is due to the habitat that both plants share. The field of ethnob-
otany is then a clear example for understanding the implicit complications that
the treatment of traditional knowledge can entail. Finally, after several studies,
we have determined that two plants are similar according to the attributes that
they share. This has been formalized in the following methodology.

Given two plants P1 and P2, the following measures are performed: the num-
ber of common attributes (#ccom), the union of attributes (#ctot), and the
number of attributes with the same value in both plants (#ceq). Then, the
resemblance between P1 and P2 is determined as follow:

R(P1, P2) = α ∗ simy1(P1, P2) + β ∗ sim2(P1, P2) (1)

where sim1(P1, P2) = #ceq
#ccom and sim2(P1, P2) = #ccom

#ctot . In particular, we have
experimentally chosen α = β = 0.5. Table 1 shows an example of the application
of the measure.

3.2 Knowledge Confidence

The information that remains as knowledge in the hive is the combination of
all the contributions given by the users. There are different aggregation mea-
sures that are useful for this purpose [15], as well as other evidence combination
methods as the Mycin certainty factors method [13]. We have experimentally
tested some of them, and we have chosen the latter. The Mycin certainty factors
combined by a sorting criteria have provided the best results (see section 4 and
[14] for further details).
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Confidence contribution: [-1, 1]

Attribute X is true for concept Y positive contribution

Attribute X is false for concept Y negative contribution

Knowledge confidence: [0, 1]

User reliability: [0, 1]

Fig. 4. Schema of the process from information to knowledge

Given a set contributions for the same attribute, a1, ..., an, coming from dif-
ferent users u1, ..., un, the procedure we propose to compute the knowledge con-
fidence on the attribute is the following (see figure 4):

1. For each contribution ai, the confidence contribution of a single user, ci, is
computed. This confidence contribution is defined in the [-1,1] interval and
is computed as follows:
– The absolute value corresponds to the user reliability.
– The sign of the confidence contribution is positive, if the user confirms

the attribute. Otherwise is negative.
2. Contributions are sorted according to their absolute value, getting an ordered

list of contributions: c′1, ...c
′
n.

3. The certainty factor combination formulas are then applied to obtain the
knowledge confidence of the attribute
(a) Let be kc the knowledge confidence and set to kc = c′1.
(b) For each i ∈ 2, ..., n

i. If kc, c′i > 0, then kc = kc + c′i − kc ∗ c′i
ii. If kc, c′i < 0, then kc = kc + c′i + kc ∗ c′i
iii. If kc > 0, c′i < 0 or kc < 0, c′i > 0): kc = kc + c′i

4. The value of the the attribute is computed according to the sign of the
resulting confidence as follows:
– If the resulting confidence is positive, then the attribute value is ”yes”
– Otherwise, the attribute value is ”no”.

Note, that this method is not incremental. All the data is stored in the system
and each time a new contribution arrives, all the steps are applied.

To illustrate the method with an example, let’s suppose that the following
contributions are available for the laurel subject:

– User 1 (reliability 0.1): Aromatic, yes
– User 2 (reliability 0.8): Aromatic, yes
– User 3 (reliability 0.3): Aromatic, no

After applying the first step, the the following confidence values are obtained:
0.1, 0.8, -0.3. Note that contributions with a positive value are confirming the
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attribute, while contributions with a negative value are denying it. After sort-
ing the contributions (step 2) the resulting order is: 0.1, -0.3, 0.8. Then, the
first combination is carried out between 0.1 and -0. 3. Since both contribu-
tions are divergent it is necessary to apply case (c), the outcome of which is
-0. 2. The next step is to combine this result -0. 2 with the 0.8 evidence. These
contributions are also divergent, case (c) is applied again, obtaining the final
confidence value of 0.6 for the Aromatic attribute of the Laurel concept. As the
reader can observe, the contribution provided by the user with highest reliability
(0.8) is the one that has the most influence in the final result. Finally, in step
4 the value of the attribute Aromatic is set to ”yes” (with knowledge confid-
ence 0.6).

3.3 The Degree of Necessity to Check Information

In the previous subsection, we described how honey bee agents decide about
the confidence of an attribute from the contributions of the users. However,
confidence of an attribute also depends on the number of contributions. That
is, it is not the same to have a confidence value of 0.4 from 2 contributions as
having a confidence value of 0.4 from 40 contributions. It is natural to think that
in the second case it is necessary that an expert verifies the information. Two
contributions are very few, and it is not necessary to burden a beekeeper with
validating this knowledge. However, with more than 40 contributions we can say
that there is a clear diversity of opinion and the approval of an expert is very
necessary. Drones are responsible for monitoring this condition in relation to the
knowledge stored in the hive and computing the degree of necessity to validate
the knowledge.

Table 2. Fuzzy rules for determining the necessity of information checking

If KC is minimum and NC is very few, then checking degree is null
If KC is minimum and NC is few, then checking degree is normal
If KC is minimum and NC is average, then checking degree is high
If KC is minimum and NC is many, then checking degree is high

The need to check is an imprecise concept, there is a ”high” need to check, or
a ”low” need. Therefore fuzzy logic allows us to model this type of knowledge [9].
We have defined a fuzzy decision system in which the degree of necessity to check
the information is evaluated from two variables, the knowledge confidence of the
attribute and the number of contributions. The variables have been modeled
with the following labels:

– Knowledge confidence (KC): minimum, low, normal and high.
– Number of contributions (NC): very few, few, average, many
– Checking degree (CD): null, low, normal, high.

Some rules of the system can be found in table 2. Drone-like agents apply these
rules in order to determine if the intervention of an expert is necessary and
reports to the swarm with the results.
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3.4 User’s Reliability Update

Confidence of the knowledge stored in the hive depends a lot on the users who
interact with the system, all of whom have different backgrounds and thus dif-
ferent reliability degrees. For this reason, a mechanism to control and adapt
the users’ reliability according to their contributions is required. In particular, a
user providing correct contributions should be rewarded by increasing their reli-
ability; conversely, when a user provides incorrect contributions, their reliability
should be decreased.

Defining correct contributions is somewhat difficult in terms of our application
domain, that of traditional knowledge, in which the knowledge is never absolutely
certain. However, we have defined this term on the basis of the opinion of the
majority of users. Then, contributions are considered correct if they coincide with
the current value of the corresponding knowledge to which they are contributing.

Then, a single user can be involved in different contributions, with different
correctness values. Sometimes contributions are correct, sometimes they are not.
So, to some extend, the user has shown a certain degree of coincidence between
his/her contributions and the knowledge stored in the system. We model the
degree of coincidence as follows:

hit degree =
hit contributions

new contributions
(2)

Where hit contributions is the number of correct contributions, while new con-
tributions is the total number of contributions that the user has provided since
the last reliability update. The hit degree is 1 when all the user’s contributions
coincide with the rest of the users, however, this is not a typical situation and
normally the hit degree is under 1.

Then, the hit degree of the user is compared with the total number of new
contributions to the system, and a change in the reliability degree is computed.
This certainty degree is once again an imprecise measure and we have used
fuzzy logic to model it. On this occasion, input variables are hit degrees and sys-
tem contributions, while the outcome of the fuzzy system is the change degree.

– Hit degree: minimum, low, normal, high
– System contributions: very few, few, average, many.
– Changing degree: decrease, no touch, increase.

Quality forager-like agents are responsible for updating the user’s reliability
according to the results of the fuzzy system.

4 Experiments and Results

The system En C Prou has been implemented in JADE, deploying Apache for the
web service, using PHP and MYSQL for dealing with the database. In the user
interface, there us a left menu that allows the user to query some information, to
upload new information, and so on. If the user chooses ”query”, then the system
shows all the information regarding a subject. When the user action is ”upload”,
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Fig. 5. Evolution dynamics of the confidence values

then the system prompts the user with the current attribute list, the hit can link
with either existing or new concepts. The current prototype is accessible at the
following URL: http://xixi.udg.es, it works in an experimental way. Current users
are volunteers of our lab who are external to the system development.

With regards to the different methods proposed, we first studied the evolution
dynamics of the confidence values of the knowledge based on system simulations.
Experiments were carried out with different numbers of contributions in the same
time instant, rating from 0 to 6, different confidence contributions (from -0.9 to
0.9), and up to 20 evolving times. Figure 5 shows the behavior of the system for
different combination methods: weighted sum, Mycin with different orders, and
the ordered weighted averaged operator (OWA). It is possible to see that for the
Mycin certainty factors with ascending order (the method explained in this paper)
the confidence remains stable when the user’s reliability is high (around 0.9).

Second, we analyzed the method proposed to determined the degree of neces-
sity to check the information. As shown in Figure 6 (left) the system sustains a
balanced behavior regarding the amount of user’s contributions and the knowl-
edge confidence on the attributes.

Finally, the reliability updating method has also been analyzed experimentally
with different hit degrees and contribution amounts (see Figure 6 right). The
system has also shown balanced behavior depending on the system contributions
of the user and the amount of contributions in the system. A user with a high
hit degree and many contributions is likely to have his/her reliability increased.
Conversely, the reliability of a user with a low hit degree is seen as defective,
and so will have his/her reliability lowered.

Most of the experiments performed, however, are based on laboratory contri-
butions and simulations. In order to get more appropriate conclusions we need
to check En C Prou with a lot more users. Particularly, we are in contact with a
public institution that is responsible of the public libraries around the local area.
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Fig. 6. Left: Results on the checking information necessity degree for several user’s
contributions. Right: Results on the reliability change analysis.

Our purpose is to use his infrastructure to deliver the system, so that elderly
people can use them.

5 Related Work

There are several previous works related to biologically inspired multi-agent sys-
tems, and particularly regarding swarm intelligence. Parunak in [16] shows inter-
esting properties of ant-like agents, as for example the idea of keeping agents small.
Bonabeau,Dorigo andThereaulaz [2] is also a good reference for applicationsbased
on such kind of swarm inspired systems. There is also an increasing interest on ap-
plying such kind of systems to deploy industrial applications. [6] and [12] are good
examples about using swarm technology to modelling factory operations subjected
to dynamic environment characteristics. Particularly, Hadeli and their colleagues
[6] show how swarm intelligence provides reliability and reactivity to the systems
without the need of a central coordination mechanism.

Regarding the specific domain of information gathering, [7] has also used the
paradigm of swarm intelligence to explore and exploite web information. Such
kind of exploration techniques have also been used to automatically build on-
tologies, as for example in [11]. We think that such kind of approaches are com-
plementary to ours. So we are not exploring but analyzing the information that
users are uploaded to our web with a given purpose. The work of Agassounon,
regarding optimizating information retrieval can also be clustered in this kind
of exploratory facet of information that differs from our approach.

A more closer approach is the one developed by Yang and Kamel [18]. They
propose the use of different swarms so that each swarm learn a different clus-
ter, and the ensemble of all of them results in a more efficient clustering. We
believe that such approach can be useful in our system in a future work, so we
can build several swarms according to different user communities (for example,
geographically distributed) and finally combine the results.

Regarding the particularly properties of swarm-like algorithms, we will like
to compare here our particular implementation for Cultural Heritage, and the
approaches followed by Cultural algorithms. Cultural algorithms are a specific
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form of evolutionary computation that utilizes culture as a vehicle for storing
relevant information that is accessible to all members of the population over the
course of many generations [12, 8]. The different steps of the algorithm comprises
an evaluation and voting scheme, that we can compare to our knowledge infer-
ence mechanism, in which the degree of coincidence among users is taken into
account for knowledge validation. We are in some sense surprising to find such
similarities with our system and Cultural algorithm, being both kinds of systems
developed for so different purposes.

Finally, there is a collaborative approach in the Internet for gathering infor-
mation that is called wikipedia (http://www.wikipedia.org/). This is an on-line
encyclopedia written by hundreds of volunteers. The computer tool that supports
it is a simple edition program called Wiki, which follows the free code style. One
of the most original elements of the wiki is that entries can be commented on
and broadened by other users. Everybody is free to propose new definitions of
terms. The edition is totally controlled by the user. Everybody can modify the
definitions without any limitation, except for the prerequisite of being registered.
Our proposal differs from the wikipedies since the information entered by users
can only be modified by agents acting inside the system and, consequently, by
the confidence and reliability methods deployed as well as the self-organization
(resemblance, ties) of the information.

6 Conclusions

Traditional knowledge is a patrimony that we cannot permit ourselves to lose. The
importance of preserving the knowledge of elderly people has motivated the devel-
opment of our En C Prou system. We have shown throughout the paper how we
can model a swarm of bee-like agents that gather the information of non technolog-
ically skilled users. Each bee-like agent performs its individual task of processing
the information, so finally, a repository of traditional knowledge is achieved.

In future work we propose broadening the experimentation by installing the
system in more powerful equipment. Consequently, it will be necessary to eval-
uate the evolution of the system when applied to great volumes of data coming
from out of the lab information sources.
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exploitation from the web. In Proc. PAKM, 2004.
12. N. Rychtyckyj, D. Ostrowski, G. Schleis, and R.G. Reynolds. Using cultural algo-

rithms in industry. In Proc. Swarm Intelligence, 2003.
13. E.H. Shortliffe. Computer based medical consultation: Mycin. Elsevier, New York,

1976.
14. M.LL. Tena. Manteniment de la fiabilitat dels usuaris i de la confianca en la
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Abstract. Information processing operations in support of intelligence analysis 
are of two kinds. They may sift relevant data from a larger body, thus reducing 
its quantity, or sort that data, thus reducing its entropy. These two classes of op-
eration typically alternate with one another, successively shrinking and organiz-
ing the available data to make it more accessible and understandable. We term 
the resulting construct, the “semantic pyramid.” We sketch the general structure 
of this construct, and illustrate two adjacent layers of it that we have imple-
mented in the Ant CAFÉ. 

1   Introduction 

In moving from raw data to finished policy recommendations, intelligence analysis 
must address two fundamental problems. First, the volume of available data is far 
more than can be processed by a policymaker, and must be reduced. Second, each 
item of data is susceptible to multiple interpretations, and must be related to other data 
to increase its semantic content. 

Typically, these processes alternate. Sifting removes less relevant data. That which 
remains is sorted to increase its semantic content. Then further sifting reduces the data 
even more, permitting more sophisticated sorting. Eventually, a broad base of seman-
tically poor data becomes a much smaller collection of data with rich associated  
semantics. 

We motivate this view of analysis processes theoretically and illustrate it in  
Section 2. Then we use this distinction to describe a novel method for information re-
trieval in Section 3. Our sorting and sifting mechanisms are inspired by techniques 
used by ants to sort their nests and forage for food. Section 4 offers experimental evi-
dence for the effectiveness of our mechanisms, and Section 5 concludes. 

2   The Semantic Pyramid 

The alternation of sifting and sorting is driven by a fundamental constraint from com-
plexity theory: as the intricacy of analysis increases, the volume of data must decrease 
to permit timely processing. 
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2.1   Computational Complexity 

An important branch of theoretical computer science classifies various algorithms into 
different complexity classes [8]. This theory offers the following insights, which are 
critical for information processing in support of intelligence analysis. 

The amount of time (computer cycles) or space (computer memory) needed to 
solve a problem depends on two things: the structure of the problem (finding records 
in a database vs. proving a logical theorem) and the size of the problem instance 
(processing a database of 103 records vs. one of 109 records). As one might expect, the 
larger the problem instance, the more time and/or space is needed to solve it. Less ob-
viously, the mathematical function that translates the size of a problem into the time 
or space needed to solve it depends on the algorithm used to solve it, and thus on the 
nature of the problem. If n is the size of a problem, the time required to solve the 
problem might scale (for example) as log(n), or n2, or n10000, or en, or n!, depending on 
the structure of the problem.  

Not surprisingly, processes that we think of as nontrivial (e.g., proving logical 
theorems) tend to be more sensitive to the size of the problem than simpler processes 
(e.g., finding the string “abc” in a document). Intelligence analysis requires processes 
across the complete range of such complexity. Complexity theory warns us that if we 
want answers in a timely fashion, we must limit the size of the problems that we ask 
these processes to solve, and that this limitation must be more severe for the more 
complex processes than for the simpler ones. 

2.2   Climbing the Pyramid 

Intelligence analysis typically begins with voluminous low-level data, and ends with 
closely reasoned analyses that support policy makers. Complexity theory shows that it 
is probably impossible to solve many problems perfectly in a reasonable amount of 
time. Thus, we must be satisfied with approximate rather than perfect answers. Fur-
thermore, even approximate methods bog down when given problems that are too large. 
For example, the complex logical analysis that is required at the higher levels of analy-
sis can only be applied to a small body of data. Thus sifting, or removing irrelevant or 
low-priority data, is an essential step in moving from raw data to finished product. 

In general, we can identify at least 
four levels in the process, summarized in 
Figure 1. 

At the lowest level, filtering (a sift-
ing operation) applies very efficient 
techniques to separate a relatively small 
proportion of incoming data as poten-
tially interesting. Ideally, the filtering 
process would touch every piece of in-
coming data. In practice, however, it 
may be necessary to sample the input 
stream instead, with the intensity of 
sampling increasing in response to 
positive tests.  

Analyze

Search

Index

Filter

Analyze

Search

Index

Filter

Fig. 1. The Semantic Pyramid—Italicized 
processes sift; nonitalicized processes sort 
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Sometimes, filter tests can be direct, for example, looking for the presence of cer-
tain terms. In other situations one must look for anomalies – deviations from expecta-
tions. (Anomaly detection does, however, require presorting: for example, to know 
that the data represents credit card purchases of individuals with purchasing histories). 

Filtered data is then indexed, to enable it to be accessed quickly. The indices used 
by current internet search engines, for example, record the presence of words in each 
document. Semantic indexing, in comparison, strives to capture the meaning of 
words, phrases, sentences, and possibly other levels of meaning expressed by the data. 
Sorting processes like indexing do not reduce the size of the data, but make it more 
orderly, in order to support higher levels of processing. 

Search uses the organization imposed by indexing to sift out the items of data that 
most closely match the analyst’s requirements.  

Analysis manipulates the smallest set of data: not the full volume of raw data, nor 
even the filtered data, but the subset that matches the analyst’s current interests and 
requirements. It is another sorting process, detecting logical relationships among dif-
ferent assertions, constructing hypotheses, and verifying or refuting them. This level 
of analysis is the most complex computationally, and requires the previous levels of 
processing to reduce the amount of data to be handled. 

These four levels are only illustrative. Closer analysis reveals further levels of 
distinct operations. Our fundamental claim is that however deep one carries this 
analysis, one will find an alternation of sifting and sorting, reducing the volume of 
data, then applying organizing processes to what remains. The structure provided by 
each sorting process enables more complex sifting at the next level, while the 
reduction in volume at each level of sifting permits application of more complex 
sorting algorithms at the next level. 

3   Sorting and Sifting in Ant CAFÉ  

We have been developing a system, called the Ant CAFÉ, that applies these concepts 
in doing information retrieval from massive docu-bases [16]. In this section we 
summarize the high-level behavior of the Ant CAFÉ, then discuss how it retrieves 
information of likely interest to the analyst (sifting) and how it organizes data to make 
this retrieval more efficient 
(sorting). 

3.1   The Ant CAFÉ Feedback 
Loop 

Figure 2 shows the basic concept 
of the Ant CAFÉ. The system has 
two main components. At the top 
of the figure, the Analyst Model-
ing Environment (AME) [1] 
maintains symbolic models at 
several levels. 
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• Community models represent the interest of a group of analysts working on a 
common topic. They are the most general models and change the least rapidly. 

• Tasking models represent a specific tasking assigned to an analyst. 
• Analyst models represent the current state of an analyst’s interests and 

hypotheses. 
• Query models reflect the immediate information that an analyst wishes to 

access. 

The AME constructs and maintains these models in response to observations of 
how the analyst interacts with information. Except for the query model, the analyst 
does not formulate these models explicitly. Currently, we represent the models as 
concept maps [4]. 

The models produced by the AME are passed to another component of the Ant 
CAFÉ, the Ant Hill (bottom of Figure 2). In contrast to the classic machine learning 
mechanisms of the AME, the Ant Hill uses techniques inspired by insect societies 
[12]. These techniques offer several benefits compared to more traditional algorithms: 

• They are intrinsically distributed and decentralized. Thus the system can be 
scaled to deal with massive data by distributing it across multiple processors. 

• Their processing model is dynamic, not query-driven. A query system does 
processing only when queried, and typically acts on a static system state. A 
dynamic system processes continuously, not just when a query is received, and 
continues to run while the system changes. 

• They are anytime rather than input-process-output (IPO). An IPO system 
provides no information until the final answer is ready. An anytime system 
quickly produces approximate answers, and gives more refined information the 
longer the user waits. 

• They are stochastic, driven by random sampling of data rather than complete 
enumeration. Thus users can dynamically trade accuracy against processing time 
by modulating the degree of coverage applied to the data. 

This paper describes two such techniques. Dynamic granularity ant clustering 
(sorting) is inspired by the way that ants cluster the contents of their nests. 
Information foraging (sifting) is inspired by the pheromone mechanisms that ants use 
to construct paths between their nests and food sources.  

3.2   Dynamic Granularity Ant Clustering 

Ants sort the contents of their nests into piles of similar items [5]. As ants wander 
around, they maintain a short-term memory of the kinds of things they have recently 
encountered, and each time they encounter an object, they assess its similarity to other 
recently seen objects. An ant tends to pick up objects that are dissimilar to their 
surroundings, and to deposit objects that are similar to those in the ant’s current 
environment. Over time, this distributed algorithm yields global clusters of high 
homogeneity. 

Previously [13, 14], we eliminated the distinction between ants and documents, and 
gave each document the ability to move itself, based on its perception of its 
environment. Like the original algorithm, this refinement partitions the set of 
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documents into internally homogeneous sets, but does not provide any structure to 
guide subsequent retrieval operations. 

Recently, we have developed a hierarchical version of this algorithm that can be 
distributed across multiple processors.  Dynamic Granularity Ant Clustering (DGAC) 
repeatedly travels down its current hierarchical structure looking for nodes (sets of 
documents) that are internally cohesive, and moving these nodes to locations where 
they fit better. The resulting hierarchy reduces the complexity of subsequent retrieval. 

The similarity function that drives the clustering is derived from the community 
model constructed by the Analyst Modeling Environment. In a previous filtering stage 
of processing, each document is indexed against the concepts represented in the 
community model. A document is considered to match a concept if it contains a mor-
pheme that is subsumed by the concept in WordNet [7, 11]. The similarity of two 
documents is then measured by the standard cosine measure between their respective 
concept vectors.  

Figure 3 illustrates the three main steps of this algorithm on a single machine. In 
the Figure, documents (at the bottom) are distinguished from higher-level nodes (cir-
cles), but the algorithm treats them all as “nodes.” Each node maintains an estimate of 
its current cohesiveness in [0, 1] (the average pair-wise similarity across all docu-
ments that it currently subsumes) and a summary of its documents that it can use for 
comparing its similarity to other nodes (say, a vector average of its documents’ con-
cept vectors). The system also maintains a threshold θ ∈ [0,1), initially 0, whose func-
tion is similar to that of temperature in simulated annealing [10]. The cohesiveness of 
a document is 1, and its summary is its concept vector.

At any given cycle, one node is active. In Figure 3a, the 
current node is document H. In the “select” step, the node 
compares its cohesiveness c with θ. If c <= θ, the node 
selects one of its children stochastically, favoring those 
that are least cohesive, and activates it. (Because 
document nodes have c = 1, this case never applies to 
them.) If c > θ, the node leaves its current parent and is 
attached to its grandparent (A in Figure 3b). (In doing so, 
it is moving the entire sub-tree that descends from it.) 
Then it randomly chooses one of its new siblings (B in 
Figure 3b) and estimates whether a merger with this 
sibling would yield coherence greater than θ. If so, it 
merges with that sibling under a new node (K in Figure 
3c), measures the actual similarity σ achieved, and updates 
θ with the Q-learning rule θt+1

 = (1 - α)θt + ασ [15]. (α, 
the learning rate, is an arbitrary parameter in [0,1]. Our 
experiments use α = 0.02.) Then the root becomes active, 
and the process repeats.

Initially, when the threshold θ is low, nodes readily 
climb up the tree and seek new partners. As θ increases, it 
becomes more difficult for nodes to relocate, leading the 
system to stabilize.
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Hierarchical clustering is not new [2, 9], but the standard approaches have several 
limitations that this algorithm avoids:  

• It does not require a centralized similarity matrix over all data items, and thus 
can readily be distributed across many machines. (In this case, each machine 
maintains its own θ, and periodically normalizes this value with those on other 
machines.) 

• The population of data items can change dynamically as the algorithm runs, 
without restarting. The algorithm discovers misplaced documents and moves 
them dynamically. The similarity estimated when doing the merge can be less 
than that measured after the merge, particularly if the summary used in the esti-
mation has been invalidated by the addition of new documents. So θ can de-
crease, permitting previously settled sub-trees to move.

• The similarity function used in the clustering operation (that is, the set of con-
cepts attested in the community model) can also be changed incrementally with-
out restarting the system. To the degree that the new function overlaps the old, 
the system reuses existing structure that has been constructed. 

• Traditional hierarchical clustering is monotonic: once two nodes have merged 
into a higher-order node, they cannot separate again. This algorithm permits 
nodes to dissolve as well as to join, enabling the system to search continuously 
for the best fit to the data. 

• This algorithm is stochastic, since node movements are evaluated by comparing 
a sample of their leaf nodes. As a result, users can trade accuracy against proc-
essing time. 

Clustering runs continuously against the community model, even when there is no 
query from the user. It continuously organizes the underlying body of data to take ac-
count of changes in both the set of documents available and the slowly evolving 
community map.  

3.3   Information Foraging 

Ants construct efficient paths between their nests and food sources by depositing 
chemicals (pheromones) on the ground whenever they are carrying food, and by 
climbing the gradient of these chemicals whenever they are searching for food. As 
many ants discover food and deposit pheromones, discrete pheromone paths emerge 
that guide the ants’ otherwise random movements toward food sources. 

Dynamic Granularity Ant Clustering organizes sets of documents into hierarchical 
clusters. Each document is a leaf in the tree, and the similarity of documents under 
each node increases as one descends the tree from the root to the leaves. In informa-
tion foraging, an analyst model or query model generates a stream of forager agents. 
Each forager agent begins at the root and descends the tree until it reaches a leaf. 
Then it evaluates a function that computes the relevance of the document that it has 
found to the higher-level query. This relevance score is deposited at the leaf, and 
propagates back up the tree toward the root, combining with any other relevance de-
posits from foragers representing the same model, and diminishing in strength with 
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each step. As successive foragers descend the tree, they select their path at each node 
stochastically by evaluating a Boltzmann-Gibbs distribution weighted by the rele-
vance scores at each of the accessible next steps. The relevance scores function like 
ant pheromones, building up paths for later foragers to follow.  

In general, searching for a data item in a population of size N requires time on the 
order of N (look at each item in turn until you find the one you want). If the items can 
be ordered linearly by their relevance, one can do the search in time logarithmic in N, 
but a single linear order is not realistic for most documents of interest to intelligence 
analysis. In our foraging system, the maximum length of the relevance path to docu-
ments of interest is the depth of the tree, which is logarithmic in the total number of 
documents (where the base of the logarithm is the mean branching factor at each 
node). Thus we achieve searching efficiencies comparable to those for linearly or-
dered data, even for data that cannot be usefully constrained to a total order.  

The cost of this efficiency is constructing the hierarchical clustering of documents 
in the first place. Thus the sifting process of information foraging requires a preceding 
sorting process of constructing a hierarchical structure that will support the foraging. 
The Dynamic Granularity Ant Clustering algorithm described in Section 3.1 provides 
this structure. 

4   Experimental Results 

We have explored the potential of information foraging and hierarchical ant clustering 
with two sets of experiments. Both are based on a static set of 500 documents drawn 
from the CNS database [3] and hierarchically clustered by similarity. In principle, this 
kind of algorithm scales very well. We have used more mature ant clustering tech-
niques to organize a dynamically changing population of more than 100,000 docu-
ments on a cluster of 16 processors [13, 14], but those techniques produced only a 
partitioning of the data, not a hierarchy, and so do not support the interactive experi-
ments with foraging that we report here. We are currently preparing an experiment 
that will demonstrate a refinement of the hierarchical clustering algorithm to a docu-
ment population on the order of 104. 

4.1   Effectiveness of Foraging 

To set up the experiment, we compute each document’s relevance to the query and 
normalize this value so that the sum of relevance is 1. We compare the foraging 
process with a random process. While this benchmark may seem an unfair 
comparison, it is quite widely accepted in the pattern recognition community in the 
context of ROC (receiver operating characteristic) curves, a performance visualization 
to which our analysis is closely related [6]. At each step, the process under study 
selects a document, adds its relevance to the process’s current total relevance, and 
then removes it from the population. Thus both processes begin with a relevance of 0, 
and end with a relevance of 1 (having seen all documents). In the random process, the 
documents are selected at random. In the foraging process, each successive forager 
takes advantage of the relevance paths laid down by previous foragers. 
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Figure 4 compares how the two processes accumulate relevance. Initially, before 
relevance paths develop, the processes are comparable. Then the rate of accumulating 
relevance accelerates dramatically for the foraging process, as subsequent foragers 
take advantage of the paths developed by previous ones.  

4.2   Effectiveness of Clustering 

To evaluate our clustering method, we use an artificial retrieval benchmark, called 
“seekers,” that can readily be 
applied periodically during 
clustering. For each doc-
ument in the population, we 
prepare 9 seekers with the 
same concept vector. Seekers 
follow the clustering 
hierarchy from the root to a 
leaf, following the branch at 
each level with the greatest 
similarity to a sample of 
leaves. The seeker metric is 
the proportion of seekers that 
terminate their search at a 
document that has a similarity 
of at least 0.95 with their concept vector.  

Figure 5 shows how seeker success (square symbols) increases as clustering 
progresses. (In this example, the collection of documents and the concept vector are 
static.) Like many stochastic processes with emergent behavior, the system exhibits a 
phase shift. Before 45000 cycles, there is little apparent improvement in seeker 
success. After 48000 cycles, seeker success jumps dramatically. The second series in 
the plot (lozenze symbols) shows the number of immediate descendants of the root 
node in the emergent hierarchy. At step 0, every document is a child of the root, but 
as the algorithm prog-
resses, more stru-cture 
develops below the 
root, with a corres-
ponding dec-rease in 
the number of imm-
ediate children of the 
root. This decrease 
cont-inues until 48000 
cycles, when the mul-
tiplicity of the root 
levels off at an ave-
rage of 3.7.  

The stabilization of 
the number of root 
children, and the cor-
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responding increase in the seeker success, show that the data hierarchy has reached a 
stable configuration that captures the intrinsic structure of the data. Because the clus-
tering process is dynamic rather than query-driven, it can achieve this stable condition 
in the background, so that the hierarchy is immediately available for foragers to ser-
vice a query. From an engineering perspective, the speed of this convergence is a 
critical design parameter that can help determine the number of parallel processors 
that are needed to accommodate a given rate of change of the document population or 
the community model. 

The asymptotic success rate of 25% for the seekers reflects the stochastic nature of 
the algorithm, and the convergence imposed on the system by the linear learning rate 
of the threshold θ. The stochastic character of the algorithm is what permits the  
system to accommodate dynamic data, and one is willing to tolerate an imperfect hi-
erarchy as the price of that flexibility. In addition, we are currently testing a more so-
phisticated learning mechanism for governing convergence, one that we will expect to 
yield higher asymptotic rates of seeker success.  

5   Conclusion 

Successful intelligence analysis requires both sifting masses of available data to reduce 
their quantity, and sorting them to increase their semantic content. These processes of-
ten alternate with one another. Sifting reduces the volume of data so that sorting can 
apply increasingly complex analyses within the bounds of available time, while sorting 
structures the data in a way that makes the next round of sifting more efficient. 

This alternation is apparent in two insect-inspired processes that we are using to 
address the massive data problem. Experiments with these mechanisms demonstrate 
their promise in concurrently increasing the structure of data and reducing its volume 
in support of higher-level analyses. 
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Abstract. Large-scale spatially distributed systems provide a unique
and difficult control challenge because of their nonlinearity, spatialdistri-
bution and generally high order. The control structure for these systems
tend to be both discrete and distributed as well and contain discrete and
continuous elements. A layered control structure interfaced with complex
arrays of sensors and actuators provides a flexible supervision and control
system that can deal with local and global challenges. An adaptive agent-
based control structure is presented whereby local control objectives may
be changed in order to achieve the global control objective. Informa-
tion is shared through a global knowledge environment that promotes
the distribution of ideas through reinforcement. The performance of the
agent-based control approach is illustrated in a case study where the
interaction front between two competing autocatalytic species is moved
from one spatial configuration to another. The multi-agent control sys-
tem is able to effectively explore the parameter space of the network
and intelligently manipulate the network flow rates such that the desired
spatial distribution of species is achieved.

1 Introduction

Large-scale spatially distributed systems provide a unique and difficult control
challenge because of their nonlinearity, spatial distribution and generally high
order. The control structure for these systems tend to be both discrete and
distributed as well and contain discrete and continuous elements. A layered con-
trol structure interfaced with complex arrays of sensors and actuators provides
a flexible supervision and control system that can deal with local and global
challenges. Traditionally, research on control of nonlinear distributed processes
has focused on distributed parameter systems involving mathematically com-
plex model reduction and controller synthesis methodologies [1]. So-called hy-
brid control systems combine process dynamics and discrete control elements
through the use of multiple linear models at different operating points [2]. One
alternative approach is based on a hierarchical agent-based system with local
and global control structures [3] that has been demonstrated on a network of
interconnected continuous stirred tank reactors (CSTRs).
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Controlling the spatial distribution of autocatalytic species in a network of
reactors requires simultaneous manipulation of interconnection flow rates. Nu-
merical experiments suggest that individual CSTRs in networks are capable
of hosting only a single dominant species, while other competing species may
be present in trace quantities. Consequently, if the control objective calls for
one species to be replaced with another, a nonlinear control scheme must be
used.

For a single CSTR with competing autocatalytic species, the reactor residence
time must first be modified such that the undesirable species is washed out of the
system, and then set to an appropriate value that is favorable to the existence
of the desired species [4]. This concept can be extended to systems with many
reactors to effectively control the spatial distribution of autocatalytic species in
the network. However, the control problem becomes complex because each CSTR
has a feed and exit stream, as well as multiple interconnections to its neighbor(s).
Obviously, each manipulated variable (interconnection flow rates, for example)
requires an actuator and control structure, along with the appropriate number
of sensors for each reactor.

One approach is to implement a nonlinear control scheme based on reduced or-
der models. A switching technique for feedback controllers was proposed whereby
a predetermined set of actuator configurations may be used to move the sys-
tem from one state to another [5]. This methodology benefits from the inherent
qualities of guaranteed closed-loop stability and operation within actuator con-
straints. Transitions between various actuator configurations is achieved through
a set of switching rules. The method is only limited to the number of a priori de-
termined set of actuator configurations and switching rules. A control objective
may not be satisfied if a suitable configuration is not available. Alternatively, in-
telligent supervisory knowledge-based control systems have been implemented to
control a distributed process with changing operating conditions in an adaptive
manner [6]. A limitation of supervisory knowledge-based control and agent-based
control techniques discussed below is lack of a priori determination of conditions
that guarantee closed-loop stability by using well-established techniques. Instead,
large number of simulations with preselected and random setpoint changes and
disturbances are conducted to collect information about process behavior and
identify control strategies and parameter values that have low likelihood of caus-
ing undesirable process behavior.

The operation of highly nonlinear systems like autocatalytic replicator net-
works may benefit from evolutionary self-organizing control because the opti-
mal operating regime and the required control strategies may not be known
a priori. Agent-based control systems provide the capability for localized and
global control strategies that are both reactive in controlling disturbances and
proactive in searching for better operational solutions [7]. This paper proposes
an adaptive agent-based control system for a CSTR network. The performance
of the agent-based control approach is illustrated in a case study where the
interaction front between competing autocatalytic species is moved from one
spatial configuration to another. Finding and maintaining operating states that
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are both stable and efficient is an ongoing research challenge since the com-
plex non-linear interactions between reactors often leads to undesirable or even
unpredicted behavior. What is needed are adaptive control systems that can
self-organize into productive patterns and self-correct in the face of unexpected
deviations.

2 Agent-Based Control Framework

Multi-agent control system architectures have several properties that make them
particularly attractive for use in supervising large, complex systems [8]. The
first, and usually most important in critical systems, is a high level of reliability.
Modularity, scalability and adaptability are also attractive features of multi-
agent systems. The adaptive and self-regulatory nature of agent systems has
only recently been investigated for solving control problems that are normally
solved with traditional methods.

2.1 Design Process

The design procedure is a derivative of recent agent design methodologies based
on the concept of the agent-services-acquaintance model [9] and the applica-
tion to manufacturing control [10]. The goal of the design process is to de-
velop an agent based control system for physically distributed industrial pro-
cesses. Certain parts of the control system are generic because they are based
on general concepts of industrial control system and operation of distributed
processes.

Comprehensive studies of the physical process domain provide information re-
garding the processes’ expected normal operating conditions, types of faults and
disturbances that may occur, and control strategies. Additionally, the desired
process operation and/or optimal conditions are expected to be known by the
designers. Required agent types and roles are identified based on the require-
ments for controlling the physical system. After the agent model is specified, the
services model can be derived. The services model describes all of the services
and responsibilities provided by each agent. Two important distinctions in the
agent responsibilities for process control applications are liveness responsibilities
and safety responsibilities, the later of which play a critical role in operation of
real-life process operations. Finally, the acquaintance model describes how the
various agent types communicate with each other.

A hierarchicalagent-based architecture has been recently developed for the con-
trol of spatially distributed chemical reactor networks [3]. The architecture con-
sists of several sub-systems, each of which are highly modularized (Figure 1). At
the process level, network elements such as reactors and valves interface with the
higher-level agents via low-level agents. The lowest level of agents in the control
system hierarchy include observation and actuation agents. Each reactor is mon-
itored by an observation agent that is responsible for sampling data requested by
other agents as well as storing the data in a history for some specified time. The
interconnection flow rates are manipulated by actuation agents (not shown) that
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observation

decision

reactor i reactor i+1

Fig. 1. Control agent architecture

receive commands from control arbitration agents. Arbitration agents may be lo-
cal (focusing on the operation of a few adjacent reactors) or global (focusing on
arbitration for all reactors).

The next layer in the control hierarchy is the local decision layer. Local deci-
sion agents are responsible for monitoring control functions and proactively im-
proving the overall performance of the network based on the control objectives
of the individual agents and the reactor network as a whole. Due to the num-
ber of control responsibilities of decision agents, each agent may use sub-agents.
For example, the local control decision agent requires information regarding the
state of the process. A sub-agent is therefore tasked with checking the state of
a reactor or one of its neighbors.

During network operation, local decision agents attempt to satisfy their in-
dividual control objectives, for example to change the dominant autocatalytic
species concentration from one species to another. However, in many cases, a
decision agent may never fully reach its desired objective due to potential con-
flicts with other agents’ control objectives. If an agent desires to modify the
interconnection flow rate between a reactor and its neighbor to meet a con-
trol objective, the adjacent reactor will be affected as well. Naturally, disputes
will arise as to the value of the interconnection flow rates between neighboring
reactors.

Arbitration agents serve as a communication channel between decision agents
as well as a means to resolve disputes between agents. The arbitration agents
receive requested operational procedures from the local decision agents and then
present a solution to them. For example, a decision agent must modify the res-
idence time of the reactor to flush out an undesirable species by manipulating
the interconnection flow rate. The decision agent sends a set of acceptable val-
ues for the manipulated variables to the arbitration agent which then tries to
match the desired operational values for neighboring decision agents. Finally,
supervision agents function as the top layer in the control system hierarchy.
This layer is responsible for setting the desired global operating conditions
for the network, for example the overall spatial distribution of autocatalytic
species.
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2.2 Global Knowledge Environment

Considering the nonlinearity of reactor networks, it is difficult to predict how the
behavior of the system changes when the system parameters are manipulated.
Consequently, one cannot easily predict how to change operating conditions of
the network by manipulating the flow rates, nor what the localized operating
conditions should in fact be, in order to satisfy a global objective. Several meth-
ods can be used to guide the decision agents in planning their control strategies
including dynamic exploration of the parameter space, rule-based heuristic mod-
els, or first-principles based models.

Decision agents may exploit a model of the reactor network, say by knowing
the precise location of stable branches and oscillatory regimes. For example, the
complete bifurcation structure for a particular system would be quite valuable
to decision agents in formulating a control strategy. However, since the number
of steady states increases exponentially with the size of the system, this method
is not scalable to larger systems. An effective solution is provided via rule-based
heuristic models coupled with dynamic exploration techniques.

A heuristic model of the reactor network consists of rules that describe how
the manipulated variables affect the system behavior. For example, the stable
steady states occupy only certain portions of the diagram, or only certain spatial
patterns of species concentration are stable. This information is provided to the
decision agents in the form of rules to guide their control actions. Furthermore,
the decision agents are allowed to “probe” the system by making small, tempo-
rary changes to the manipulated variables and observing the resulting system
behavior. This dynamic exploration provides additional flexibility to the decision
agents when the generalized heuristic model cannot explain system behavior.

Although information may be exchanged between agents via arbitrators, these
interactions are local and inherently limit the amount and quality that can prop-
agate through the agent control structures. The global knowledge representation
(Figure 2) serves as an environment for indirect communication between agents.
This concept builds upon the hierarchical structuring of the control system in
Figure 1 by adding a mechanism for communication and reinforcement of ideas.
The information in the knowledge space is divided into categories including local
control objectives, control heuristics, and data-based models.

Information exchange occurs indirectly between agents because agents asyn-
chronously read/write information to/from the knowledge space. For example,
a particular agent may discover a local control strategy that works particularly
well in meeting an objective set by a supervisor. This strategy is cataloged in the
knowledge space by the originating agent. Other agents may read this strategy
from the knowledge space and implement it to satisfy their particular control
objective. The value of the strategy is then rated by the agents that adopt this
new strategy such that its value relative to others is promoted. Similarly, out-
dated information in the knowledge space continuously decreases in value and
eventually may be deleted from the knowledge space.

Although the stability of the agent dynamics cannot be guaranteed for every
scenario, this methodology helps to reduce or prevent the emergence of dysfunc-
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tional agent dynamics by reinforcing “good” agent behavior, while punishing
undesirable agent behavior. Furthermore, the agent system has been designed
with the assumption that the agents’ decision delays are small compared to the
time scale of the physical process. This assumption generally holds for chemical
processes in which operating changes are introduced infrequently and process
dynamics are represented with time scales of tens of minutes or even hours.
Traditional controllers are normally used in the event of very rapid localized
dynamics and, while the agents may modify the setpoints of such controllers,
the time-critical (first response) control actions are strictly outside the domain
of the higher decision making agents.

3 Network Model

A network of interconnected isothermal CSTRs is modeled by specifying the ma-
terial balance for each individual reactor in the network. The cubic autocatalytic
reaction for N autocatalytic species is

R + 2Pn
kn−→ 3Pn (1)

Pn
kdn−−→ D (2)

where R is the resource, Pn is the nth species, and D is a dead (inert) species.
Reaction rate constants kn and kdn characterize the growth and death rates of
the nth species.

Since the complexity of the system grows geometrically with the number of
species and the number of reactors in the system [11], for networks larger than
three reactors with two or more species, analytical solutions become practically
intractable, although a single trivial steady state (r = 1, pn = 0) exists for every
combination of model parameter values. This trivial steady state is always stable
and will always pose a threat to control efforts as it represents total extinction
of the autocatalytic species in the system.
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In the control examples detailed in the next section, the interconnection flow
rates are used as manipulated variables. The system is operated with constant
volume and constraint equations are formulated on the reactor flow rates to
ensure that material is conserved. The reactor inputs include the reactor feed
and the interconnection flows from neighboring reactors. Outflow rates from each
reactor include the interaction with neighboring reactors as well as the drain.
The constraints include a lower bound such that all flow rates are non-negative
and an upper bound that ensures the equality of total inflow and outflow.

4 Case Study: Product Grade Transition in a Chemical
Reactor Network

The performance of the agent-based control architecture is demonstrated in a
case study to control the distribution of autocatalytic species in a network of 49
(7x7 grid) reactors hosting three autocatalytic species using the interaction flow
rates as the manipulated variables. The spatial distribution of species determines
the overall product composition that exits the network. By manipulating the
spatial configuration of the species in the network, one can produce multiple
grades of product by simply reconfiguring the network’s connectivity.

The species that populate the reactor network have similar growth and death
rates, such that one species does not have an unfair advantage over the others.
When a particular interaction flow rate is manipulated, the outflows of the cor-
responding reactors are adjusted using constraint equations on the flow rates,
thus keeping the volume of each reactor constant.

Moving the system from different initial spatial configurations to different
final configurations requires individualized (and potentially unknown) control
strategies for each region of the network. Although it is a difficult control problem
for conventional controllers, an agent-based architecture can achieve spatial state
transitions as illustrated below. The agent-based controller discretizes the reactor
state space by identifying the dominant species in the reactor. Each reactor will
only have one dominant species and several residual species that exist solely
because of material exchange from neighboring reactors. The dominant species
has generally an order of magnitude greater concentration than the other species.

4.1 RePast Implementation

The reactor network model and agent-based control system is implemented with
the open source agent modeling and simulation environment RePast [12]. The
RePast toolkit is a java-based framework for agent simulation and provides fea-
tures such as an event scheduler and visualization tools.

The control agents created with RePast interact with virtual representations
of the physical reactor network. The virtual network objects map the states of the
physical system to objects that can be manipulated by the control objects. The
interface between the physical network to the agent environment can take the
form of a data acquisition system in the case of a real world control application, or
in this case, a simulation of a chemical reactor network. The ordinary differential
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Fig. 3. Software implementation of agent control system with RePast

equations that describe the autocatalytic reactions in each CSTR are solved
numerically using the CVODE solver [13]. The solver code is written in C and
linked with RePast via the Java Native Interface (JNI).

Figure 3 illustrates the graphical user interface implemented in RePast. The
upper left quadrant of Figure 3 contains a 2D map of the dominant species in
each reactor, with red (dark gray) representing species 1, blue (black) species 2,
and green (light gray) species 3. The map shows the distribution of each species
in the network as is updated whenever the state of one of the reactors change,
ie the dominant species switches from one species to another. The upper right
quadrant of Figure 3 shows the control panels for starting/stopping the sys-
tem as well as changing any of the available system parameters. The bottom
left quadrant of Figure 3 contains the graphical representation of the physical
reactor configuration, with respective icons corresponding to reactors and inter-
connecting pipes. Finally, the bottom right quadrant of Figure 3 shows a sample
time series plot for the concentrations in an arbitrarily chosen reactor.

The spatial distribution of autocatalytic species in Figure 3 shows the open
loop behavior of the system following the temporal evolution from a randomly
generated set of initial conditions. Figure 4 shows the resulting changes in the
species concentration profiles when the control system is tasked with creating
different product grades starting from the initial condition shown in Figure 3.
The desired product grade is specified by setting the percentage of the net-
work average species concentrations (1,2,3) = (0.25,0.02,0.73) and the system
goes through a series of transitionary states (Figure 4a) before successfully set-
tling on the grade setpoint (Figure 4b). A second grade transition (0.3,0,0.7)
demonstration is also successfully executed by the control system (Figure 4c).



230 E. Tatara et al.

(a) (b) (c)

Fig. 4. Evolution of 2D spatial concentration profile of the dominant species in each
reactor, with red (dark gray) representing species 1, blue (black) species 2, and green
(light gray) species 3

The specified concentration profiles only constrain the desired network average,
thereby providing freedom to the agent-based control system to find any non-
unique solution that satisfies the objective.

5 Conclusions

An adaptable, intelligent agent-based control system has been implemented to
control the product grade transitions via spatial distribution of autocatalytic
species in a reactor network by manipulating the interconnection flow rates. This
methodology has been proposed as a real-time alternative to traditional nonlin-
ear control schemes involving predetermined controller configurations or com-
putationally expensive optimization techniques. The multi-agent control system
is able to explore the parameter space of the network and intelligently manipu-
late the network flow rates such that the specified goal is achieved. The reactor
control system presented in this paper is a self-organizing application (SOA)
that can dynamically and automatically modify its configuration to maintain its
stability and productivity. The control system achieves this goal using interlock-
ing sets of simple local behaviors. The use of a global knowledge environment
as a method for indirect communication between agents provides a means for
the reinforcement of information. Furthermore, this system ontology permits the
agents to organize their solutions independently of a top-level supervisor as long
as the global objective is satisfied. This agent structure has direct correlations
to other artificial and natural systems with dissipative information fields such
as information sharing in ant colonies [14], [15] where information is reinforced
in a self-catalyzed reinforcement process.
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Abstract. This paper discusses a study on system nervousness in a
multi-agent manufacturing control system. Manufacturing control sys-
tems, built along this approach, are able to generate short-term forecasts
that predict both resource loads and order routings. These forecasts be-
come known throughout the multi-agent system with some time delay.
If the agents make their decisions based on these forecasts, proper mea-
sures need to be taken to account for these delays, especially when dis-
turbances (rush orders, machine breakdowns) occur. If agents react too
eagerly and swiftly, the forecasts become unreliable. This paper studies
this issue and the measures in the control system design that address
the problem. More precisely, the agents behave in a socially accept-
able manner that reconciles adaptation to changed circumstances with
predictability.

1 Introduction

This paper presents a study on control system nervousness that appears as a re-
sult of coordination mechanisms in multi-agent manufacturing coordination and
control systems (see: [1], [2]). The research application discussed in this paper
is a multi-agent system implementing manufacturing control. Previous develop-
ments ([1], [2], [3], [4]) have shown that this system exhibits several advantages
including the ability to quickly respond to any disturbances in the system and
the ability to foresee what is going to happen in the future (predictive/forecast
ability). This forecasting ability has implications for the system developers. One
of them is the need to balance the validity of the forecast information against the
ability to react to the occurrence of changes and disturbances. When the system
reacts aggressively and causes the forecast to become inaccurate, the system is
said to be overly nervous. The art here is to design and implement a proper
balance or so-called social acceptable behavior in the system.

This paper goes as follows. The next section concisely describes the multi-
agent coordination and control system using stigmergy. Next, system nervousness
issue is addressed in detail. Finally, the description of an experiment on how to
balance a system and some closing remarks conclude this paper.

S.A. Brueckner et al. (Eds.): ESOA 2005, LNAI 3910, pp. 232–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 The Design of the Multi-agent Manufacturing Control
System

In this section, the mechanism of producing the forecast is explained. Our multi-
agentmanufacturing control comprises of threebasic agents types, namely product
agents, resource agents and order agents (implementing aPROSAarchitecture [5]).

– Product agent. It masters the know-how on how to make a product type
with sufficient quality.

– Order agent. It manages the physical product being produced, the product
state model, and all logistics information processing related to the job.

– Resource agent. It corresponds to a physical entity in a manufacturing
system. It offers processing capacity and functionality to the surrounding
agents. Its knowledge space is limited to self-monitoring and self-control. It
also has a list of resources that connect directly to it. A resource agent is
equipped with a blackboard on which other agents can put, observe and mod-
ify information. Information on this blackboard evaporates through time,
distinguishing is from a normal blackboard [6].

2.1 Coordination Between the Agents

To properly operate a manufacturing systems control, the agents need to share
knowledge and cooperate. In general, there are two basic ways to perform coordi-
nation, i.e. coordination by direct communication and indirect communication. In
this research, agents utilize indirect communication by dropping pheromone-like
information on blackboards at the resource agents. There are two main coor-
dination mechanisms in this system, namely an exploring mechanism and an
intention propagation mechanism. In addition, there is a feasibility information
propagation mechanism (not discussed here).

Exploration mechanism. The aim of this mechanism is to ensure that all
orders entering the system can find their way(s) to get all their operations (steps)
executed. Orders, to which order agents attach, need to create and send out
mobile agents called exploring ants to accomplish this task. Exploring ant agents
run in the computation/simulation time mode. In addition, they inherit the
problem solving behaviors from their creator. Exploring ants start their exploring
activities from the position where the physical work piece resides, and continue
until they virtually reach the end of the factory. To accomplish its task, the
exploring ant agent observes the pheromone information at local blackboard
attached to resource agents, and uses this information as a search guideline.
The strategy to explore the available search space is a plug-in for the control
system. Not every exploring ant agent uses the same strategy. While performing
its task, an exploring ant agent records any important information (for instance
the resource(s) it has visited, the estimated starting time, waiting time, duration
of each processing step, cost of operation, etc.) at every resource it visits. At the
end, the ant compiles them into a proposal of solution and reports back to the
order agent. See Fig. 1.
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Fig. 1. Exploring mechanism

Fig. 2. Intention propagation mechanism

Intention propagation mechanism. In order to be processed at a certain
resource, order agents have to express their intention to the resource agent.
This part explains the mechanism to propagate the intentions of order agents
to the resource agent(s). This task is done by an intention ant. An intention
ant is created by the order agent, and it virtually executes the remaining rout-
ing or processing steps of the selected candidate solution. It visits all resources
that are listed in the selected solution. Furthermore, at each resource, this ant
expresses the intention of its order agent by requesting a time slot to be re-
served. As a response, the resource agent checks its schedule list, blocks the
slot and provides the intention ant with the most updated information on the
starting time, operation duration and waiting time. During its journey, the in-
tention ant agent collects and updates any necessary information from the re-
source(s) it has visited. Thus, changes promptly become visible during refresh.
To maintain the validity of the information, the slot reservation information
evaporates and disappears unless refreshed. As a consequence, if the order agent
is serious in having its operation step(s) processed at certain resource(s), it
must frequently propagate its intention to the corresponding resource(s). See
Fig. 2.
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Remark that in manufacturing control, the agent system has a single owner,
who in principle decides about the agents allowed therein. Ongoing research
is expanding this manufacturing control design toward supply network coordi-
nation. In that context, trust and reputation mechanisms are integrated into
the design to handle the presence of multiple parties not sharing the same goals
[7] to account for agents that may lie. This matter is outside the scope of this
paper.

2.2 The Reinforcement of the Forecast Information

The whole exploring and intention propagation mechanism is explained in
Fig. 3. This cycle can be named the solution’s reinforcement cycle. When an
order agent expresses its intention to be processed on one/several resources for
its remaining processing step(s), the order agent sends out intention propagation
ants to make its intention known to the resource agents. Based on this informa-
tion, the resource agents build their load forecast information and schedule their
own logistical activities such as maintenance, setup, etc. If a resource agent is
able to work out a reliable forecast on its future load, it can provide an exploring
ant agent with more accurate information about the possible starting time at
that resource. Based on this information, the order agent can also have a more
accurate proposal of solution. Accurate proposal of solutions will yield a more
accurate intention. This cycle will then be repeated and the accuracy of the fore-
cast and solution will be reinforced. Basically, it can be said that the accuracy
of the solution created by the order agent is a function of the resources load
forecast accuracy.

Fig. 3. The reinforcement of solution mechanism

2.3 The Forecast and Its Emergent Property

The interactions between the agents create a useful forecast information, and
moreover, the forecast information appears emergently. The exploring and in-
tention propagation mechanisms each produce a new information that cannot
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be observed or found at the agent itself. This information appears as a result of
interactions, exchanging information, between the agents at a micro level. For
this reason, it can be said that these information are emergently appeared. Also
remark that agents in this system only have detailed knowledge within their
own scope (reflecting themselves). The agents possess no knowledge about the
other agents, even for the same type of agent. For instance, one order agent
has no information on solutions of the other order agents. There are two types
of information that appear from these interactions, namely a solution list at
every order agent and a resource load forecast at every resource agent. These
emergently appeared information inform about the possible future state of the
system. The solution list reflects the possible route that enable the order to be
processed completely, and the resource load forecast informs the resource agent
on the upcoming load in the future.

The ability of this new designed system is called emergent forecasting. As
defined in [1], the working definition of emergent forecasting is: The ability to
foresee what is going to happen in the near future whereby the way in which the
forecast appears is not predefined, but –emergently– appears as a result of local
interaction of the agents in the system.

3 System Nervousness

This section covers the system nervousness issue in this innovative manufactur-
ing system design. Historically, practitioners of Material Requirement Planning
(MRP) systems first coined the wording system nervousness. According to them,
it generally refers to frequent changes in the due dates of open orders or, sim-
ilarly, the instability in planned orders [8], [9]. When dealing with forecasting,
accuracy and reliability are the most important properties. When forecast is
neither accurate nor reliable, the process of decision making that based on the
forecast will neither accurate nor optimal. As a result, the decision will change
from one to another, and this cause the nervousness in the system. When the
system is nervous, it is unable to make a good planning. In relation to our sys-
tem, the working definition of system nervousness can be defined as: the degree
to which elements in the system react on the internal and external stimuli (e.g.
rush order arrival); increasing nervousness renders the behavior of the over-
all system more responsive but less predictable and eventually unstable and
chaotic.

3.1 The Appearance of System Nervousness

In the MAS manufacturing control system, coordination and interaction be-
tween agents constitutes a source of dynamics and potential instability. As men-
tioned before, agents in this system coordinate amongst each other by observing
pheromone-like information that is placed by other agents on the environment.
Furthermore, agents interpret this information and react accordingly. There is
no synchronization of information in this system; agents observe the most up-
to-date information with some delay. By employing local knowledge, agents try
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to interpret the global state of the system and furthermore try to draw a de-
cision out of it. This is how order agents in this system try to find solution(s)
to be finished. Exploring ants are sent out to explore the manufacturing net-
work, then construct and report back the proposal for a solution. Next, order
agents select one proposal to become their intention. These mechanisms are ex-
ecuted repeatedly during the lifetime of the order agents. Therefore, chances
are that order agents encounter a better proposal of solution(s) and are will-
ing to switch to the better one. When this switching happens to appear too
frequently, the system behavior becomes very dynamic, and, possibly, even un-
stable. The forecast becomes obsolete and useless. Consequently, the whole plan
collapse. The system loses its stability, and becomes difficult to control. Fur-
thermore it becomes hard to predict what is going to happen in the future. For
example, defining the delivery time of the product to the customer becomes
difficult and so does observing the load at each resource. The system will have
no clue when orders will be finished, resources will have no idea when can they
perform the maintenance activities, rescheduling has to be conducted too often,
and etc. Therefore, this behavior needs to be prevented by adequate dampening
mechanisms.

3.2 Mechanisms to Have Those Agents Live in Harmonious Way

Since being too nervous can harm the whole system, this behavior should be
controlled. There are several ways to handle this anomaly. According to Parunak,
et.al [10], system performance often improves if individual agents reduce their
activity. Hogg. et al. [11] also mentioned several ways to reduce the dynamics to
avoid the chaos, namely increase the uncertainty in the agents, imposing a very
slow decision making rate on the part of the agents and increase the diversity of
the system by introducing additional types of agents which use different problem-
solving methods.

In our manufacturing system, order agents should not change intention as soon
as they encounter some new and better solution. Remark that a new solution
can appear because of changes and disturbances happening in manufacturing
environment (for instance rush orders, machine breakdowns, unavailability of
materials). When order agents encounter a better solution, order agents must
probabilistically wait for a while and observe what is the effect caused by the
changes or disturbances and then react accordingly. Remark that the decision
of one order agent affects decisions of other order agents. When order agents
react immediately on changes, order agents take a decision based on imma-
ture/outdated/invalid information. Their decision will be misled by their inter-
pretation of this no-longer-valid information.

3.3 Stabilize the System: socially acceptable behavior

In [1], a method called socially acceptable behavior, which is used to handle this
nervousness issue, is explained briefly by presenting one example. This section
discusses the concept underlying this behavior. The idea is simple: order agents



238 Hadeli et al.

are not supposed to change their intention without sufficient reason. One pos-
sible way to handle this nervousness issue is composed of three modules. These
modules are:

1. Ensure that the new solution is better to the old one. Order agents are allowed
to switch to their new intention if and only if they are convinced that the per-
formance of the new solution offered by their exploration team is significantly
better relatively to the current intention (i.e. the estimated performance dif-
ference is well above the prevailing noise/uncertainty level). The idea here is
to grant some reward for a new intention that promises a better performance.
The implementation of the reward function is based on the idea that changing
intentions brings a cost to the whole system. The benefit of changing intention
has to be high enough to justify this cost. The example of the reward function
canbe an exponential function.As in [1], an exponential function isused so that
small changes in performance improvement have a far less chance of causing an
intention change of the order agent.

2. Apply a probabilistic mechanism each time the order agent is willing to
change intention. As mentioned before, an order agent has its frequency
rate to refresh its intention. The idea is to draw a certain random number,
and if this random number is larger or equal to a certain defined threshold,
then the order agent is allowed to change its intention. Remark, no matter
how big is the value of the significance level, the system should guarantee
that if the significance level stays the same all the time, then at the end of
a finite time horizon, this change should be announced.

3. Limit the frequency to change intentions. This module imposes an upper
bound on the frequency at which order agents can change their intentions.
After changing its intention, an order agent’s threshold for changing its new
intention is raised. Then, this threshold decreases over time until its original
value provided the order agents intention remains unchanged. This mecha-
nism spaces successive intention changes over time.

3.4 The Detection of Nervousness

Being able to handle nervousness should be combined with the ability to sense
the nervousness of the system itself. Nervousness in this system is caused by
the behavior of order agents shifting towards a new and better solution to get
finished. Consequently, this behavior should be mapped in an observable way;
either by the order agents itself or the other types of agents, for example re-
source agents. In this paper, we propose three types of graphics to observe the
nervousness, namely:

1. Frequencies of how often order agent changes its intention in a defined time
interval. When the frequency is too high, it automatically shows that order
agent is unable to control its desire to change to new better intention.

2. Performance value of each order agent can also become an indicator. When
the performance values shows a dense oscillation, it can be seen as an indi-
cator that order agent is always changing its intention.
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3. As mentioned above, every order agent must expresses its intention to any
resource(s) that it is likely to visit during its life cycle. Resource agents
will then plot these intentions from order agents towards time horizon. By
observing the fluctuation number of agents at this resource along certain
time interval, order agents can define whether they needs to adjust their
behavior.

These three sources of information should be interpreted wisely. Noticing that
one graph shows a tendency to nervousness doesn’t mean that the whole system
is nervous. An order agent should study the whole information before taking any
decision.

4 Implementation and Experimental Results

In order to observe the appearance of system nervousness, a simple experiment
has been conducted. The setup of the experiment is as follows: the production
system consists of two identical machining centers, and one arrival station (See
Fig. 4). Remark that the use of two resources as an example is for the sake of
simplicity in understanding the underneath events, behavior and the executed
control mechanisms. In our system, the design is scalable.

Orders that arrive at the system first enter the arrival station and spend a fixed
time period in that station before being dispatched to either of the two identical
machines. While orders are in the arrival station, order agents start to send out
exploring ant agents to find solutions. Each time an order agent sends out an ex-
ploring ant, it draws a random number to define to which resource it sends the ant
(i.e. a very simple selection rule). Each resource has 0.5 probabilities to be visited.
Upon arrival at the resource agent, the exploring ant agent checks the available
capabilities it needs and then checks at what time it can start processing on that
resource and what the duration will be. After collecting that information, it reports
back to its parent. Next, the order agent takes a decision based on this information.
This mechanism is repeatedly executed along the life cycle of the order agents. In
this setup, order agents are set to be very naive. They switch to a new solution
as soon as they find that the solution from another resource is better. The result
of this behavior can be seen in Fig. 5. The left graph shows the number of order

Fig. 4. Experimental setup
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Fig. 5. Number of orders that intend to be processed in first and second resource

Fig. 6. Example of ever-changing intention behavior of order agent

agents that request to be processed at the first machine along time horizon. The
right graph shows the same information for the second machine.

As revealed by the graph, at the beginning, the agents are more interested in
the second resource, since more exploring ant agents visit the second resource
(by chance). Later, the exploring ants discover the first resource, and some of
them change their intention to the first resource. Between time stamp 1000 and
2000, a rush order arrives at the first resource and shifts the schedule of some
orders backward, and this causes orders, which discover this, to change their
intention to the second resource. Consequently, the second resource receives a
lot of order’s intentions; on the other hand, the first resource starts losing its
contracts. However, fact shows that the rush order consumes less processing
time than expected, it finishes earlier. Order agents that spot this changes will
take this opportunity to change their intention. There are agents who previously
switched to the second resource spotting this change; unfortunately it is too late,
since their previous place has been taken by other orders. They have lost their
opportunity to be finished earlier. Again, between time stamp 2000 and 3000
another rush order arrives at the second resource and shifts the schedule of some
orders backward. As a result, order agents that notice this changes change their
intention to the first resource. This ever-switching intention is unlikely to appear
frequently. When this behavior appears frequently, then the system is nervous.
Example on how an order agent changes its intention from the first resource to
the second resource and vice versa can be seen in Fig. 6.
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Fig. 7. Number of orders that intend to be processed in first and second resource.
Threshold value = 0.5.

Fig. 8. Number of orders that intend to be processed in first and second resource.
Threshold value = 0.3.

In order to control that behavior, socially acceptable behavior is applied to
this experiment. The first step is to ensure that the new solution is significantly
better than the current solution, and then when order agent is about to change
intention, it draws random number. The result of this control mechanism can be
seen on Fig. 7, where in this experiment the threshold value is set at 0.5, and
Fig. 8, where in this experiment the threshold value is set at 0.3. As can be seen
in the graphs, the behavior of the agents is more controllable.

Note that in simple examples, the opportunities to create undesirable sys-
tem behaviors are limited. Indeed, the larger a system becomes, the more delay
occurs in the propagation of information, and this delay plays a key role in
the emergence of system nervousness and undesirable (chaotic?) behavior. Con-
versely, forecast reliability grows more important when it becomes the coupling
and coordination medium between mechanisms that operate largely indepen-
dently, which also is more likely when systems become bigger. In a manufactur-
ing system, somehow independent planning and plan execution is to be expected
for normal operations, rush orders, set-ups and changeovers, maintenance and
cleaning, etc. Indeed, if only because human operators often are responsible for
managing secondary operations, the forecasts will serve as coordination medium
in a factory, and forecast reliability will be a necessary condition for it to be
useful and workable. In other words, the above example probably is only the
proverbial tip of the iceberg.
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5 Discussion

System nervousness is a phenomenon that appears because elements in a multi-
agent manufacturing control system react aggressively towards stimuli. System
nervousness is not entirely deleterious; a manufacturing control system needs to
be nervous to a certain degree to deal with changes and disturbances.

This paper presents this nervousness issue and dampening mechanisms, accom-
panying this re-activeness to changes and disturbances, to ensure that the fore-
casts remain usable. These dampening mechanisms only allow intention changes
when the perceived improvement is sufficiently large and well above the noise lev-
els. They impose intention changes dispersed probabilistically over many refresh
cycles (a luxury enjoyedby a control system in cyber space that supervises amacro-
mechanical system operating at much lower frequencies; an IT infrastructure man-
agement system typically cannot employ this mechanism), and impose a limit on
the frequency at which individual order agents can change intentions.

Mechanisms to handle nervousness are not limited to those three mechanisms
that are mentioned in the previous chapter. However, the most important mech-
anisms is to ensure that agents only change their intention if they are sure that
the gained value is significant enough. For further research, this mechanism can
be extended by varying the level of gained value, where the highest is awarded
for intentions related to a more immediate future, and the lowest to the most
distant one. Another issue that can be included in this mechanism is by varying
the level of gained value for different type of orders. For example, rush orders
can switch more easily than normal orders.

The detection of system nervousness is also an important issue in handling
system nervousness. Since this system is not a centralized system, the infor-
mation on how nervous the system is will not be detected and broadcasted in
a centralized fashion. Agents have to observe this phenomenon by themselves.
Therefore every agent can have a different interpretation on how nervous the sys-
tem actually is. There are three mechanisms that are introduced in this paper,
however the handling mechanism is not limited to them. The first two inputs
are inputs that can be observed directly inside the order agent. This information
gives an idea to the order agent of the impact of frequent changes of intention to
its performance value. The third input, the number of orders that plan to request
service(s) from certain resource, gives an idea to order agent of the behavior of
other agents. At the very beginning (warm-up phase) of agent life-cycle, it has
no idea on how nervous the system is, however as soon as it adjust its parame-
ter concerning intention changes, it can start observing the result and adjust its
behavior. Agents can start to learn what will be the effect by applying an aggres-
sive behavior rather than calm behavior. How the agent uses this information
about the system nervousness still is ongoing research.
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